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ABSTRACT

This report presents the results of a study of techniques for

the determination of parameters in mathematical models of the human

pilot. The study was conducted by Space Technology Laboratories under

NASA Contract NAS 1-2582. Earlier company-sponsored research, initiated

in 1961, on the dynamics of the human operator in manual control tasks

provided valuable background which is also reflected in this report.

The study departs froR conventional approaches where the pilot is

characterized by transfer functions or quasi-linear describing functions,

progressing into the domain of time-variant and nonlinear operations and

representative models of this type. The final portion of the study is

concerned with manual tracking in two axes where the operator is modeled

as a multiple input-multiple output system.

The emphasis has been placed primarily on develo_ent of compu-

tational methods and, hence, model matching experiments on synthetic

pilots with known parameters were required. The resulting methodology

was successfully applied to actual pilot tracking data and provided new

insight into the pilot's dynamic response. The experimental results

are presented in the report. A part of the study was devoted to the

c_nparison of continuous and iterative parameter adjustment methods.

In addition, significant analytical results were derived pertaining

to the nature of parameter optimization by the gradient method. The

report concludes with a recommendation of areas for further study of

mathematical pilot models.

V



TABLE OF CONTENTS

1. INTRODUCTION ....................... 1

2. MODEL MATCHING TECHNIQUES OF PARAMETER IDENTIFICATION • • 3

2.1 Historical Background ............... 3

42.2 Statement of Problem ...............

2.3 Choice of Performance Criterion .......... 4

Z.4 Possible Adjustment Strategies ........... 7

2.5 Computation of Gradient .............. I0

2.6 Formulation of an Assumed MILthematical Mbdel

of Human Pilot in Single Axis Tasks ........ ii

2.7 Formulation of a Two-axis Mb_el .......... 13

3. EXPERI_ PROCEDURE .................. 18

3.1 General Approach .................. 18

3.2 Description of the Tracking Task .......... 18

3.3 Experimental Procedure -Phase i, Time-invariant . . 22

3.4 Experimental Procedure -l_gase 2, Time-varying • • • 23

3.5 Experimental Procedure -Phase 3, Nonlinear ..... 25

3.6 Experimental Procedure -Phase 4, Two-axis ..... 25

4. CO_FI_R IMPL_]_ITATION ................. 29

4.1 Continuous Parameter Adjustment .......... Z9

4.2 Determination of Parsmeter Influence Coefficients
in a Nonlinear Model ................ 31

4. 3 Extension to a Two-axis Model ........... 37

4.4 Iterative Parameter Adjustment ........... 40

4.5 Relaxation Parameter Adjustment .......... 46

5- ANALTrICAL RESULTS .................... _8

5.1 Nature of the Criterion Surface for Iterative
Parameter Optimization ...............

5.2 Nature of the Criterion Surface for Continuous
Para_ter Optimization ............... 50

5.3 Nature of the Gradient in Continuous Model
Mating ......................

5.4 The Adjustment Path in Parameter Space ....... 62

5.5 Effect of the Choice of Adjustment Gain K ..... 67

5.6 Interaction Among Parameters ............ 69

5.7 Analysis of Model Matching Using a Sinusoidal

Excitation Signal ................. 75

vii



6. EXPERIMENTALRESULTS..........
6.1
6,1.1
6.1.2
6.1.3
6,1.4

6.1.5

6.1.6

6.1.7
6.1.8

6.2

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

6.2.6

6.2.7

6.2.8

6.2.9

eag__Ze

7. CONCLUSIONS AND RECON_4ENDATIONS FOR FURTHER STUDY ....

APPENDIX A - Experimental Results ..............

APPENDIX B - Comparison of NASA and STL Model Matching

Implementation ................ 154

REFERENCES ......................... 160

GLOSSARY OF SYMBOLS ...................... 162

• ''''.. 79

Experiments with Model Matching Techniques . . • 79

Effect of Adjustment Gain ............ 79

Effect of Parameter Initial Values ....... 80

Effect of Rate Terms in the Criterion Function • 80

Sinusoidal Variation of G1 ........... 82

Sinusoidal Variation of aS ........... 83

Step Variation of _3 .............. 83

Adjustment of Parameters in Nonlinear Models • • 84

Effect of Additive Noise ............ 85

Matching of _uman Tracking Data ......... 86

Linear Invariant Models ............ 86

Comparison with PrevlouslyPublishedData .... 91

Occurrence of Complex Roots ........... 93

Identification of Time-variant Parameters .... 96

Matching Nonlinear Models .......... 98

Two-axis Model Matching Results ......... i01

Comparison of Single and Two-axis Tasks ..... i03

Cross-coupling Between Axes ........... 108

Closed-loop Characteristics ........... ii0

112

116

viii



q

LIST OF FIGURES

No.

2-I

2-2

2-3

3-1

3-2

3-3

4-1

4-2a

4-2b

4°3

4-4

4-6

4-7

4-8

_-9

4-1o

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-i0

5-Xl

Title Pag____e

Model Matching Block Diagram ............... 5

Adjustment Paths in Parameter Space ........... 5

Resolution of Coordinate Changes on Display ....... 15

Tracking Task of the Human Operator ........... 19

Experimental Facility .................. 20

Block Diagram of Two-axis Control System ......... 26

Continuous Method Model Matching ............. 32

Circuit for Adjustment of Parameter _5 .......... 34

Circuit for Adjustment of Parameter _6 .......... 34

Deadspace Characteristics and Derivatives ....... 35

Block Diagram of Continuous Nonlinear

Parameter Optimization .................. 38

Block Diagram of the Iteratlve Parameter
Adjustment Strategy ................... 41

Computer Circuits for Iterative Method .......... 42

Computer Circuits for Iterative Method .......... 43

Computer Circuits for Iterative Method .......... 4/_

Computer Circuits for Relaxation Method ......... 47

Profile of the Criterion Function F(_1,_2,_3,_4) ..... 51

Profile of the Criterion Function F(_1,_2,_3,_4) ..... 51

Profile of the Criterion Function F(_1,_2,_3,_4) .... 52

Profile of the Criterion Function F(_1,_2,_3,_4) ..... 52

Contours F = const in_cz i- A_j - Plane .......... 55

Criterion Function F Versus _i -_J .......... 55

Envelopes of Contour Lines f = const, in

the A_3, A_ 4 Plane ................... 57

Time Varying Gradient in U3' U4 Plane .......... 60

Open Loop Gradient Loci in the u3' u4 Plane ....... 61

Open Loop Gradient Loci in _, 5 4 Plane Before .and.After
Filtering of Output Signals J. ........... 62

Descent Trajectories in _ _ Plane - Sinusoidal
Excitation ...... 3' 4 64

• e • • e , • • • • • • • • • • • •

iX



i

LIST OF FIGURES

NO •

5-1z

5-13

5-14

5-15

6-i

6-2

6-3

6-_

6-5

A-I

Titl_____e Page

Effect of Parameter Initial Conditions on

Trajectories in Gl,S 2 Plane Sinusoidal Excitation ...... 65

Descent Trajectories in G3,G 4 Plane - Random Excitation . . 66

Dependence of Descent Path on Choice of Ki, Kj ...... 68

Descent Paths in the Gi' c_j Plane ............. 68

Scatter Graph of Experimentally Determined Parameter

Values Using Three Adjustment Techniques ......... 87

Scatter Graph of Experimentally Determined Parameter

Values Using Three Adjustment Techniques ......... 88

Scatter Graph of Experimentally Determined Parameter

Values Using Three Adjustment Techniques .........

Regions of Real and Complex Roots of

Characteristic Equation ..................

Block Diagram of Continuous Computation Scheme ......

Elements of Model Matching Technique ...........

A-2 - through A-35 ..........................

B-1 • • • • • • • • • ,, • • • • • • • • • • • • • • • • • • • • •

Bm2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

B-_ . • • • • . • . • . . . . • . . . . ° . • . . . . . . . . .

94

i00

i16

i17-15_

155

156

157

X



io INTRODUCTION

An important problem in the design of aircraft and manned space

vehicles is that of describing the dynsmic response of the human pilot

mathematically. Numerous previous studies have had the objectives of

expressing the pilot's input-output characteristics in quantitative

terms. The techniques employed in these studies limit the tasks that

can be considered to a class of manual operations where the pilot re-

sponse can be approximated by a linear time-invariant system having a

single input and a single output. However, in many situations of prac-

tical interest the pilot acts as a multiple input_ multiple output sys-

tem, and his response is essentially time-varying or nonlinear.

The purpose of this study is to examine new techniques for ob-

taining mathematical models of the human pilot that permit a departure

into the regime of time-varying and nonlinear operations and into multi-

axis control situations. Ideally, the methods to be investigated should

allow incorporation of known mechanisms of human performance into the

mathe®_atical model so as to make maximum use of existing knowledge. The

methods should also provide a means for continuously monitoring pilot

performance in the process of determining optimum model parameter values.

The basic strategy used in the model matching procedure is optimi-

zation of parameters by a steepest descent method or by related methods

of finding the minimum of a suitably chosen criterion function. This

optimization may be performed by a continuous or by a step by step

procedure. Both techniques have been the subject of investigation in

this study.

To develop these techniques and to explore their applicability to

model matching of human pilots in the larger class of operating condi-

tions described abovep the research study was subdivided into four

parts. The first part was primarily concerned with developing the model

matching approach and suitable computational strategies which were ap-

plied to the case of single axis manuel tracking. The tracking task

performed by the operator was chosen so as to emphasize linear and time-

invariant performance. After test and validation of the model matching

technique in this relatively simple first task, the study progressed to

i



the more complex tasks of time-varying, nonlinear, and two-axis

tracking.

In each of these investigations the computer approach of model

matching was tested on systems with known sets of parameters to ascer-

tain accuracy of results. Each phase of the study concluded with

matching of human operator's tracking data. The experimental results

are presented in Section 6 and Appendix A of this report.

A review of the experimental procedures employed and the various

computer programs implemented during Part I, 2, 3 and 4 of the study

is presented in Sections 3 and _. Significant analytical results

regarding the nature of the model matching process were obtained and

are presented in Section 5. _he analytical results include : a deri-

vation of properties of the criterion function used in model matching

and of the gradient of this function; an explanation of the dynamics

of parameter adjustment in terms of stability, convergence, and param-

eter interaction; and an analysis of the relative precision of parameter

determination.

Section 7 presents conclusions _erived from the results of Parts i

through _ and recommendations for future study of mathematical pilot's

models. Appendix B presents a detailed comparison of the continuous

parameter adjustment techniques used in this study with the techniques,

based on transfer function notation, which have been used by Whitaker (1),

Adams ( 2 ), and others.

The use of analog rather than digital computation was motivated

by economy of operation, flexibility of experimentation, ease of proc-

essing of pilot output data in analog form, and the convenience offered

by the analog computer in operating on a real-time basis. The relatively

simple analog computer implementation of the techniques investigated

offers advantages for use in the laboratory or in field applications.

2



MODEL MATCHING TECHNIQUES OF PARAMETER IDENTIFICATION

Historical Background

Previous investigations of the dynamic response of human operators

have been based on one of three general techniques, Fourier analysis,

spectral analysis or model matching techniques. The methods based on

spectral analysis and Fourier analysis have been well documented in

the literature (3) and will not be reviewed.

Early model matching studies have been based on visual matching

of the time response of an assumed model and that of a pilot in a

specific control task. This operation requires manual parameter adjust-

ment on a trial-and-error basis. Such a study was performed at Goodyear

Aircraft Corporation (4). Two studies in the literature on human opera-

tor models have used automatic techniques for the adjustment of the

parameters of an assumed model. Ornstein (5) applied an automatic

technique for determination of parameters in an assumed linear model

of the human operator. The method used has been described by Graupe

(6) and consists of adjusting parameters in such a way as to minimize a

particular error called the "equation error." Wertz (7) has applied

the "learning model" or "output error" technique described by Margolis

(8) to adjust automatically the l_xlmeters according to a specified

criterion. Humphrey and Bekey _,I0) extended these methods to the

determination of parameters in nonlinear models. Studies by Elkind

and Green (ii) have represented the human operator by means of a linear

model composed of a set of filters whose impulse responses are ortho-

normal. The filter outputs are weighted and summed to yield the out-

put. The weights are chosen to minimize the mean squared matching error

over a particular time interval.

The objective of this study has been to extend these earlier con-

cepts and to define and solve some of the problems inherent in the model

matching approach. The scope of this study only permitted the investiga-

tion of the output error method and was limited to operations involving

compensatory tracking tasks. A further broadening of the program in

future model matching studies to include pursuit tracking tasks as well

would be most desirable.

3



2.2 Statement of the Problem

The methods of parameter optimization considered in this research

are based on the comparison of performance of an assumed mathematical

model with that of the human pilot, as indicated in Figure 2-1. An

automatic parameter adjusting strategy must be selected which determines

the optimum values of the model parameters, in the sense that the model

performance approximates as closely as possible the human pilot perfor-

mance. It can be seen that the mechanization of techniques of this

type involves three primary considerations:

(a) A mathematical model must be selected and the adjustable

parameters fully identified. The evidence available in

the literature on human dynamic response provides Justifi-

cation for the selection of a second order differential

equation as a model for the operator's performance.

(b) A criterion function must be selected which can serve as

an index of the validity of the mathematical model. Mini-

mization of this criterion or performance function by ad-

Justment of model parameters results in the closest possible

agreement between pilot output and mcdel output.

(c) An automatic technique for performing the required parameter

adjustments must be selected.

This section presents a brief discussion of the rationale which

underlies the selection of the type of criterion function used in the

experiments and to present three different adjustment strategies which

were employed. The results obtained with these strategies are given

in Sections 5, 6,and Appendix A.

Choice of Performance Criterion

The criterion which compares the performance of system and model

must be selected with care. Consider first the mathematical descrip-

tion of the model and pilot behavior. Dynamic systems are described

by means of differential equations. A system of order n is described

by a single nth order differential equation or by n first order equations.

Thus a model of order n and having m parameters Gi can be described by

4



Input
x(t)

Excltati_

Model

m

Parameter Vector

'___ ,_CriE_e_on ] F

Human _Y ;
Operator Element

Parameter

Adjustment
Circuits

Figure 2-1. Model Matching Block Diagrmn

%
!

r

Figure 2-2. Adjustment Paths in Parameter Space



the set of equations

_i = fl (Zl' z2 "''Zn; t; _l' G2' ""_m ) (2.1)

i = i, 2, ...n

The zi can be considered to be the corresponding time derivatives of

the model output, viz.,

dlz

zi =
dti

(2.2)

Time t appears explicitly in Equations (2,1) since the model output

also depends on the time dependent input x. To completely characterize

any dynamic system a set of initial conditions is required in addition

to the system equations and these are given by

zi(o)= ci i = i, 2, ....n (2.3)

where ci represents the value of the ith derivative at the initial

time. Since the set of variables zi provide a complete description of

model behavior at any particular time, they are commonly referred to as

state variables. The variables zi may also be considered as components

of a state vector _. Similarly the m adjustable parameters GI, (_2' """Gm

can be considered the components of a parameter vector _. The set of

first-order differential equations described by Equation (2.1) can then

be stated as a single vector differential equation

= f (z, t, _); z(O) = _ (2.4)

where _ represents the initial state of the system. The model matching

problem consists in selecting a particular parameter vector _ such that

the model response approximates as closely as possible the response of

the human pilot.

The state of the system to be identified, in this case the human

pilot, can be denoted by means of the vector y. However, whereas the

order of the model represented by z is assumed (in Equation 2.1 the

order is n) the system to be modeled, represented by the vector y,

For explanation of symbols see the Glossary on page 162.



2.4

is of unknown order and may in fact be only partly deterministic.

The problem of formulating a performance function is one of

determining a distance between the vectors z and y. In order to

qualify as a distance function or metric in a function space, the

criterion function must satisfy certain properties. A typical

criterion function may be formulated as

T

F =/lY(t ) -z (_ t)l 2 dt

0

(2.5)

where z and y represent the output positions of the model and pilot

respectively. It is important to note that the criterion function F

is an ordinary function of the parameter vector _. That is, a selec-

tion of particular values for the parameters will result in a given

number for the criterion function upon evaluation of the definite

integral in Equation (2.5). Using this criterion function the para-

meter optimization problem can proceed on the basis of ordinary cal-

culus by determining the maxima or minima of functions. On the other

hand the instantaneous criterion function defined by

f = l_y(t)- Z ((_, t)] 2 (2.6)

dmpends not only on the parameter values but on the entire time

history of the model output and consequently represents a functional

whose maximization or minimization is the concern of the calculus of

variations.

Possible Adjustment Strategies

The three parameter adjustment strategies employed during this study

plus an additional strategy developed but not proven experimentally,

can be visualized conveniently with reference to Figure (2_'2) which

illustrates contours of constant criterion function F in a p_rameter

plane determined by the two adjustable parameters _I and 52. Parameter

optimization begins with an arbitrary initial set of values denoted by

(0)_ as indicated in the figure, and proceeds automatically to the

?



particular value of the parameter vector which minimizes the criterion

function. Four possible paths are illustrated in Figure (2-2):

(a) Path i proceeds from the initial position along the gradient

vector, i.e., in a direction always normal to the contour

lines, and terminates at the minimum value. This is the

path known as "path of steepest descent.'! (See Ref. 12).

The adjustment strategy is based on choosing a rate of

adjustment of the parameters which is proportional to the

negative of the gradient vector;

(2.7)

where K is a positive constant.

This equation corresponds to the two scalar equations

(b)

_i -- -K _---E-F

(2.8)

Using the gradient at -f_a"0" a discrete parameter change

vector can now be computed by means of the relationship

Z_ (0) = -K V--_ (_ (0))

(2.9)

(2.1o)

At the minimum of F the gradient as well as the rate of

change of the parameters approach zero and the solution

becomes stationary.

The steepest descent path can be approximated bystraight

line segments by means of an iterative procedure which

adjusts the parameter vector in a series of discrete steps.

(See Ref. I3). Thus begimming at the initial value _ (0)

the components of the gradient



(o)

and the process is repeated. If the steps are sufficiently

small path 2 can be a good approximation to path i in

Figure (2-2).

Path 3 : The major disadvanta@e of the computational

strategy involved in path I is the need to ccer_ute the

gradient vector at each point. In order to implement Equation

(2.10) it is necessary to compute and store all n components

of the gradient vector. This procedure requires either n

Coml_ater circuits operating in parallel in order to obtain

all n components of the gradient vector, or n memory cells

which can be used to store the c_nponents when they are

computed one at a time. Methods of computation of the gradient

are discussed below.

Path 3 is an Iterative technique based on cyclical parameter

adJus_zent. Assume that the initial value of the parameters

is again given by _ (0). Now computeone componentof the

gradient, say

.a_(_ (0)) (2.12)

then the parameter o_ only is a_lJuste_ to yield

(0) -K aF(_ (0)) (Z.I3)
%(I) = %_ a %

and the new parameter vector _ f_'l'isdsfined _s

%co),%co),....%co)]
:[%(1) ....%(1)]

Parameter _ is mow _ste(1 "co yiel_ the next point in

the parameter sl_ce, etc. The process is continued until

the nth parameter hak been adjusted and then the cycle is

repeated.

9



2.5

(d) Path 4 is obtained by a so-called relaxation procedure

which consists of adjusting each parameter in turn until

the performance function is minimized with respect to that

parameter. With reference to Figure (2-2), if the relaxa-

tion process is begun by adjustment of parameter GI this

parameter is adjusted until the path reaches a relative

minimum. At this point GI is held constant amd adjustment

is switched to _2 until a new minimum is reached. The

process is repeated in this manner.

In the experimental studies of Phsse i the cyclical or iter_tive

technique of path 3 and the relaxation method of path 4 were instru-

mented by means of an analog computer using the criterion function of

Equation (2.5). Path i was approximated by using a continuous param-

eter adjustment procedure based on a minimization of the time-depena-

ent criterion function given in Equation (2.6). However, the gradient

of the latter criterion function is not strictly defined when the

parameters are varied and consequently this adjustment strategy may

be considered an approximation to a continuous steepest descent path,

with the degree of ap_ _ximation being dEpendent on the rate of change

of the parameters. The nature of the approximation and the resulting"

path are discussed and illustrated in Section 5- Some of the mathe-

matical considerations involved in the formulation of the adjustment

strategies and their effect on the convergence and stability of the

p.rocess are also discussed in Section 3.

Com_utation of the Gradient

Two different methods were used for the computation of gradient com-

ponents _F/_ _i" The iterative strategy denoted by path 2 in Figure

12-21 was based on computation of components of the gradient from the

relation

F(_ (k)) = F(_l(k)' _2 (k)'''" _i(k)+/_(_i' ..._(k)) (2.15)

I0



z.6

where the subscript k represents the computation of the kth itera-

tion. Clearly this computation requires either the use of two l_rallel

mathematical models, or some form of data storage to permit computa-

tion of the finite differences _F(_ (k)).

The continuous or approximate steepest descent adjustment" strategy

was based on the computation of components of the gradient vector by

means of the method of influence coefficients (14). This method is

discussed briefly in Section 4.

Formulation of an Assumed Mathematical Model of the Human Pilot in

Sim61e Axis Tasks

The parameter optimization techniques described in the preceding

paragraphs are based on the formulation of a model equation suitable

for representing the unknown system. A finite number of parameters

are to be adjusted in the model to minimize a particular criterion

function. The rationale used here for postulating a general model

structure conforms to the approach cummonly used in engineering

analysis, namely to formulate the model equation on the basis of past

experience and observation of typical input-output characteristics.

The extensive work on human dynaaic response reported by McRuer

and Krendel ( 3 ) suggests that in many single axis tracking tasks,

human operators may be characterized by a quasilinear describing

function of the form

K (z + jonk)e-j_
H(J_) (2.16)

(1 + J(dl'2)(l + J(dl_3)

where K, TI, T2, T3 and _ are parameters which depend on the forcing

function bandwidth and on the controlled element dynamics. It has

been shown that when the forcing function contains negligible energy

above 0.75 cps, the describing function (2.16) may represent as much

as 80 - 90% of the total power in the operator's output. Consequently,

the form of (2.16) was suitable for the single axis models used in

this research. However, since _ is typically very small in continuous

tracking (T = O.15 sec) and since a number of experimental difficulties

ii



2.6.1

2.6.2

are encountered when attempting to match a pure time delay, the

term • was set equal to zero, and the following human pilot

model was formulated

•z"+ + %z : i + %x (2.17)

where x is the pilot (and model) input and z is the model output.

This equation corresponds to (2.16)_vlz.

%
_3 and T23 T 3 are the roots of

K=_, Tl=_4 ,

(12s2 + _ S + i)

The model was formulated as a differential equation (rather than

a describing function) in order to make possible a direct extension

to the time-varying and nonlinear case. This model is similar to

the one employed by Adams (2) with the exception of the denominator

term. The STL form allows for two complex roots, whereas Adams'

model is restricted to two identical real roots.

Extension to the Time-Var_in_ Case

The model of Equation (2.17) can be used to represent directly

linear Invariant and linear time-varying cases of human operator

response. In the former case the human pilot is assumed to behave in

an approximately stationary manner. In the latter case, the controlled

element dynamics is tlme-varying, thus inducing time variation in the

pilot's response. The same model form was used in both cases and time

variations in the o's were investigated. The results of these studies

are reported in Sections 5 and 6 below.

Extension of the Model to the Nonlinear Case

The model structure was modified to include nonlinear terms

primarily to test the applicability of the model matching techniques,

rather than as a valid hypothesis of human dynamic response in the

given tracking situation.

Two representative nonlinearities were selected for the model:

namely, a cubic term fl(x) = x 3 and a deadzone term,

12



w

x-%, x>%xa = zz(x) = o , iz ,Ixlz_ _6 (z.z8)

_+%, _ <'=6

where cx6 is a positive constant.

for two reasons:

(i)

C2)

These nonlinearities were selected

They represent two important classes of nonlinear behavior:

fl(x) is an analytic function of x while f2(x) has slope

discontimnities. It was necessary to test the model matching

techniques with both types of nonlinearities.

fl(x) and f2(x) represent behavior similar to that observed

in human tracking records, fl(x) is an amplitude-dependent

gain characteristic which corresponds to a "hardening" or

"softening" spring, f2(x) corresponds to threshold phenomex=t

which are known to occur in tracking. In addition, an ampli-

tude limiter was used in some experiments as a third form of

nonlinear response.

The human operator was assumed to behave as a second order non-

linear system governed by the equation

where x d is the output of a deadzome of width 2a 6. Furthermore, the

system output y is subject to amplitude limiting at a level a7. The

model was of the same form as (2.19) and had 7 adjustable parsmeters

""%"
Formulation of a Two-Axis Model of the Human O_erator

Extension of Sin_le-Axis Model

As a straightforward approach to formulating a two-axis model

of the human operator for the purposes of this study, a direct

extension was made of the sin@le-axis model discussed above. A

s_ama_trical two-axis trackin_ task was selected in which the excursions

of the controlled element are assumed independent of each other.

13



Z.7.2

The human operator's response to vertical and horizontal error

signals was expressed in terms of two uncoupled,

differential equations.

For the vertical axis:

Yv + alv Yz + a2v Yv : a3v x +V a4v v

For the horizontal axis:

= +
_h + alh Yh + a2h Yh a3h Xv a4h

where Xv and xh are the vertical and horizontal deflections of a dot

on an oscilloscope display, i.e., the inputs to the human operator.

In accordance with earlier notation the model differential equations

used to match the human operator output Yv' Yh are written in terms

of zv and _ with unknown coefficients CZiv and (_ih' e.g.

second order linear

(2.20)

(2.21)

÷%v ÷ a2vZv= a3vXv÷ iv (2.22)

(The subscripts v and h will be omitted subsequently where no mis-

understandings can arise.)

The controlled element dynamics did not contain cross-coupling

between axis, hence the operator's responses in each axis can be

assumed as essentially independent. This initial assumption is

supported by the results of a symmetrical two-axis tracking experi-

ment conducted by Humphrey (15). However, the possibility of cross-

coupling in the operator's responses must also be considered.

Cross-Couplin_Effects

The integrated display of two tracking error components on the

display screen, and the integration of two-axis control into a single

fingertip controller introduces a problem in the interpretation by the

operator of visual stimuli and kinesthetic feedback. When observing

the displayed tracking error in two dimensions the operator probably

does not consciously resolve the error vector into cartesian coordinates,

Xv, Xh, when manipulating the control stick. He may actually interpret

14
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the display error and the stick deflection in terms of polar coordi-

mates (see Figure 2-3). The displacement element expressed in polar

coordinates r and _ is obtained by a linear transformation of the

cartesian elements dXv, _h:

_ _ cosy+_ s_
(2.2S)

X V

X h

Figure 2-3

Resolution of Coordinate Changes on Display



2.7.3

Theoperator could not perform this resolution (or its inverse) with
precision evenif he knewthe individual deflection elements. This

suggeststhat there are interactions in his responsesto error stimuli
regardless of whether they are perceived in terms of cartesian or polar
coordinates. A further complication stemsfrom the fact that a f_nger-
tip controller of the type used in this study (see Section 3) does not

provide a clear "proprioceptive" feedback of stick deflections in the

horizontal or vertical sense. Hence the operator's control deflections

in the two axes contain inevitable interactions.

Mathematical Model of Cross-coupling Effects

On the basis of these considerations it is reasonable to expect

unintentional cross-coupling of varying degree to exist in the tracking

responses of the operator. The model equation (2.22) should therefore

be modified as follows for the vertical channel :

% + 0:1 _'v + a2Zv + _i Zh + B2 _'_ + 71 Zv Zh

= Xv+ Xv+B3xh+ £h+ 2Xv

(2.2_)

and similarly for the horizontal channel. The additional, underlined

terms on the left and right hand sides of the equation are the various

types of cross-coupling having unknown coefficients Bi and _i"

The following distinction is made as to the sources and form of

the cross-coupling terms added to the equation: The effects of the

excitation signal xh or its derivative will be termed perceptual or

input cross-coupling. The effects of the variable zh will be termed

motor or output coupling. The terms may appear in linear or nonlinear

form. The latter case may occur under conditions where a heavy task

load occurs simultaneously in both channels and causes a deterioration

of manual control action with unintentional response in the wrong chan-

nel. The coefficients _i,_ i are used to denote these different coupling

phenomena az follows:

16



OutpAt Input

(Motor) (Perceptual)

Linear _i' _2 _3' _4

Nonlinear _ i _ 2

As will be discussed in Section 6 some experimental computer

runs were included in this study to detect the presence of cross-

coupling in the operators' performance and to observe, if possible,

a quantitative improvement in model matching by the introduction of

individual cross-coupling terms.

For further stud_ of these phenomena it would be of great

interest to introduce display cross-coupling artificially,e.g.

!

XV = X +

!

-- V

(2.25)

and to retrieve the coefficients ml, m2 in the operator's response

by model matching techniques. It would also be of considerable

practical value to stud_ control tasks which are essentially asysne-

trical and exhibit inherent coupling phenomena. Such tasks probably

tend to induce reverse cross-coupllng in the operator's responses

after the operator has learned to cope with this situation.

17



EXPERIMENTAL PROCEDURE

General Approach

The philosophy of model matching in this study is based on the

"output error method" illustrated in Figure 2-1. The same input

signal is applied to the human operator and to an adjustable mathe-

matical model. The outputs of model and operator are compared and

the output error is used in generating an appropriate performance

function. The parameter adjustment program utilizes the performance

function and computes the parameter changes required to minimize the

performance function. The input and output quantities were obtained

by having the human operator perform a simple closed loop control task

as depicted in Figure 3-1. This task performed by the operator is common-

ly referred to as a compensatory tracking task, i.e., a signal propor-

tional to the tracking error is displayed to the operator who in response

produces corrective actions by means of a hand controller.

An analog computer was utilized for generating the input signals,

simulating the controlled element, and driving the display during the

experiment. The analog computer also performed the parameter optimi-

zation process. Most of the model matching experiments used the con-

tinuous parameter adjustment technique which requires only conventional

analog computer programming. The iterative parameter optimization _ech-

nique was instrumented on an iterative analog computer with provisions

for independent control of the operating modes on each integrator, per-

mitting the use of any integrator as a track-and-hold channel. The

details of the computer implementation for each technique are given in

Section 4.

Description of the Tracking Task

Experimental Arran6ement

The tracking tasks performed during each of the four phases of the

study were similar. The pilot was seated in a fixed-base cockrit shielded

as much as possible from external disturbances. Figure 3-2 illustrates

the cockpit used in the experiments. Changes in the tracking task re-

quired for different phases of the study are described in Sections 3.3 -

3.6.

18



I NoiseGenerator
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_ntroJ_ea_ _- -

Element _u_

(s) J I

Figure 3-1

Tracking Task of the Human Operator

TABLE 3-1

Human Operator Tracking Tasks

Phase I Phase II Phase llI Phase IV

(Linear (Time (Non- (Two-

Invariant ) Varying ) linear ) Axis )

Type of Input Random Random Random Randc_
Disturbance r(t) Noise Noise Noise Noise

Filter

o(s)

Controlled
Element
Dymanics

GI(S)

G2(s)

G3(s)

5Os 20 Same as 40

(lOs+l) (s+l) 3 (2s + 1) 2 Phase I (b_ + i)_

(both axes )

12.5 Variable iO

's(s+l) (see

Section Same as

12.5 3.4) Phase I (both axes)
2

s

12.5
s+l

19
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3.2.2

3.2.3

3.2.4

Display and Control Configuration

A 5" oscilloscope having a reticle calibrated in I centimeter

units was used as display instrument. The tracking errors were in-

dicated by proportional displacement of a dot from the center of the

oscilloscope screen. A three-degree-of-freed_ spring centered .finger-

tip controller used had a lever arm of approximately 4-1/2 inches and

a maximum angular deflection of + 30 degrees in horizontal and vertical

direction. Horizontal and vertical stick deflections, Yh and Yv and

corresponding oscilloscope displays, xh, Xv, were activated as required

for single or two-axis control tasks. The controller exhibits negligible

inertia and damping and was used as a position controller.

Input Disturbance

Low frequency Gaussian noise generators were used as sources of the

input disturbance signal, r(t). The output noise had a power spectral

density, N = 2.41 volts2/cps at zero frequency, the power spectrum was
o

flat up to approximately i00 ra_sec. This noise Was fed through a low-

pass filter to obtain desired input signal characteristics. Different

filters were employed as required for each task of the study. The

characteristics of the filters are given in Table 3-i.

Controlled Element D_amics

Three simple controlled element configurations were simulated on an

analog computer and utilized in the experiments. These configurations

are described by

aiCs)= s (s+ i)

X 2

G2(s)= 2
s

GS(,)= ,,(,KS
+ i)

Values of the _ins employed are listed in Table 3-i.

(B1)
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3.8.5

3.2.6

3.3

Recordin_ of Data

In order to apply identical experimental data to several model

matching strategies for purpose of comparison, it was necessary to

record the input signals and the human operator responses in a variety

of experimental situations, and to use the recorded information subse-

quently as input to the computer program. These signals were recorded

on a Precision Instrument Company FM magnetic tape recorder, appropriately

coded for each experiment. Voltage pulses which served to control the

analog computer were recorded simultaneously on an adjacent track.

O_eration Instructions and Training

In order to obtain approximately invariant tracking performance, the

two subjects were given extensive training sessions for both the single-

axis and the two-axis tracking tasks before any data were recorded.

After proficiency and consistent performance in one axis tracking had

been demonstrated, an additional period of one hour (12 five minute

tracking runs) was devoted to training in the two-axis task. The impor-

tance of adequate training was pointed out and quantitatively demonstrated

in a two-axis tracking study by Humphrey (15). The operators were in-

structed to achieve and maintain minimum display error, as measured by

the distance between the dot and the center of the scope. They were

also instructed to avoid excessively large and rapid control stick de-

flection as much as possible. Data taking was initiated only after the

operators had acquired reasonable tracking proficiency.

Experimental Procedure - Task i: Linear Invariant Models

The objective of this task of the experimental study was to examine

different model matching techniques and select those most promising for

subsequent tasks. Four methods were considered, the so-called "contin-

uous_" "sequential_" "iterative2" and "relaxation" processes discussed

in Section 2.4. The continuous, iterative, and relaxation techniques

showed sufficient promise and ease of implementation and were therefore

implemented on analog computers as described in Section 4. The results

of these tests are presented in Sections 5 and 6.
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3.4

Each method was tested for convergence and stability by first

matching the parameters of a known system, i. e. a differential equa-

tion identical to the model but having known parameters. After

passing this test, human tracking data previously recorded was applied

to each method. Parameter values were obtained and compared for con-

sistency. During this phase of the study, only the basic stability

and convergence of the methods were investigated.

Data characterizing the input disturbance function and controlled

element dynamics are given in Table 3-i. Two human operators were used,

each performing three runs with each of three different controlled

element configurations (a total of 18 runs). While nine runs for each

of two trained operators are not sufficient to establish the statistical

characteristics of the experiment, they form an adequate sample for

evaluating the feasibility of the l_a_meter optimization methods.

Each individual tracking run lasted five minutes. From these runs

sample intervals of 30 seconds were selected and re-recorded on tape

loops to supply input signals for iterative parameter adjustment as

described in Section 4.

The same experimental data were used with each of the different

computational strategies in order to avoid ambiguities due to varia-

bility of human pilot performance.

Experimental Procedure - Task 2: Linear Model with Time-Varyin_

Parameters.

The emphasis of Task 2 was directed to the improvement of the

parameter tracking ability of the continuous method. Task 2 was

divided into three parts: optimization of convergence time to para-

meters in known time-invariant systems, convergent to time varying

Parameters in known systems, and application of the technique to

human tracking.

Task 2-i

In order to gain a better understanding of the adjustment process

as well as to improve the system stability and response time, the

effects of parameter adjustment gain K and the rate compensation term,

q_, were given primary consideration. These terms are described in

detail in Section 4.
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Task 2-2

This task was concerned with the identification of a time-varying

parameter in the original system. A sinusoidal or square wave was

used to perturb the system parameter in question. The parameter ad-

Justment circuit of the model system tracked the parameter perturbations.

Task 2- 3

In this task the model matching technique was applied to identifi-

cation of human pilot model parameters while the pilot performed a time

varying single-axis tracking task. The controlled element, or plant,

was made time-variant by the following time sequence: For the first

two minutes of a five minute run, the plant was described by the diffe-

rential equation

_+_= 20y

or by the transfer function

P 20

X - s (s + i)

During the third minute of the run the gain was increased at a constant

rate for lO seconds unL_i it reached a value of 45. This value of gain

was held for one minute and 50 seconds. During a subsequent lO second

interval, one coefficient in the plant differential equation was changed

at uniform rate according to

+ (1 - O. lt) _ = 45y

After ten seconds, the plant transfer function was thus given by

P 45

Y - 2
s

and these characteristics were obtained for 50 seconds. After a total

elapsed time of four minutes of tracking, the plant was again returned

to its initial state and remained in this condition for the final 50

seconds of a five-minute tracking run. The same program was used in four

runs by two operators. As in Task 2-2, the data was recorded on magnetic

tape and subsequently analyzed by the continuous model matching method.

t
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3.5

3.6

Experimental Procedure - Task 3: Non-Linear Models

The first part of the experiments was concerned with verification

of the convergence of the nonlinear parameter adjustment technique

described in Section 4 of this report. The technique of matching the

system to a nonlinear model with known characteristics was employed.

Methods for implementing influence coefficients of analytic non-

linearities had been discussed in the literature previously (14). How-

ever, no such background was available for non-analytic nonlinearities

and the required computer circuits were developed and tested.

The second part of the study was concerned with the effect of

additive noise on the l_rformance of model matching techniques. The

same system as in Task 1 was used, but the output of the simulated pilot

was defined as

y' = y + cn (t)

where n(t) is the output of a Gaussian noise generator and c is a

constant. This noise slmulates random fluctuations of the operator.

The third part of the study was restricted to application of the

results of the first phase to human tracking data previously obtained.

The general approach, the display and control configuration and the

controlled element dynamics are described in Section 3.2 and Table 3-1.

Since a uniqu_ solution could not be obtained for all seven variable

parameters of the nonlinear method, the linear parmmeters were first

adjusted and then held constant while improvement in the error cri-

terion was attempted by varying the parameters associated with the

nonlinear terms.

Experimental Procedure - Task 4: Two Axis Trackin 6 Tasks

A block d_agram of the two-axis control system is illustrated

in Figure 3-3.

Two uncorrelated random excitation signals r v and r h activating

the vertical and horizontal channels, respectively, were generated

by two separate noise generators, each having a zero frequency spectral

density NO = 2.41 volts2/cpe and a flat power spectrum from zero to

approximately i00 rad/sec. The input signals, the controlled system
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dynamics and filters employed are given in Table 3-i. The two axes

of the control task did not include cross coupling. The displayed

quantities xv (vertical deflection on the scope) and xh (horizontal

deflection) as well as the operator's output signals Yv (control

stick vertical position, normalized in terms of full stick deflection)

and Yh (control stick horizontal position) were recorded on magnetic

tape for repeated use. Sufficient tracking runs were performed to

study the feasibility of the model matching techniques, but extensive

coverage of operator characteristics was not attempted.

Two human operators performed three tracking tasks each with three

replications: i) single axis tracking in horizontal direction, 2)

single axis tracking in _rtical direction, 3) two-axis tracking.

All runs were of 5 minutes duration. The mean squared values of

excitation signals, rh_ and rv-_, displayed errors _ and Xv2---, and

and yvZ were recorded for each run.operator output,

A mathematical model was fitted to the human operator data by means

of the continuous method described in Section 4. Data obtained from

two-axis tracking was analyzed separately and model matching was l_r-

formed individually for each of the two channels. Repeated model

matching runs of the same recorded data were required in some instances

to minimize interactions between parameter adjustment which occurred

when starting from arbitrarily chosen initial parameter settings. This

procedure was found necessary to provide dependable parameter values

for subsequent evaluation of the dependence of adjustment gains,

damping terms, and cross-coupling terms on the model matching performance.

In order to be able to evaluate the adequacy of the model, the mean

square resid-al matching error,

--2 I r T 2

e =_. Jo e dt

was used as a "matching accuracy criterion."

_7



During the search for cross coupling 6 in the model (see

Equation 2.24) the coefficients (_were held fixed to avoid interaction

between the adjustment loops. _ne model l_rameters of the uncoupled

system were held near their optimum values during attempts of finding

a fur_er improvement of the matching criterion by the introduction

and adjustment of various cross-coupling terms.

0ff-line model matching procedures involving the re_ated use of

tal_d Ol_erator track_ing data were necessaryCl ) in order to minimize

computational complexity and (2)to provide greater assurance of deriving

wA-_ A_DUA_. ±:,±_ _9±_A_ WAAA be f_rther discussed in Section 5 in

terms of the model matching results presented there.
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CO_UTER _TION

Computer Progranmin_ for Continuous Parameter AdJustmen_

The continuous method of _ter adjustment described in

Section 2.4 is related to similar techniques used by Margolio ( 8 )_

_nitaker ( 1 ), and Adams ( 2 ). It uses the parameter influence pro-

Kre,mminK technique developed by Metsstnger (!_). Figure 2-1 shows

the computer implementation of pe_wmeter adJustBent schematically.

Continuous adJustaent of the par_eter wLl_es from _rbitrarlly chosen

initial values is effected by feedback st_als generated by the com-

puter on the basis of the measured error criterion.

The criterion function selected here is

1 (e +q._)2 (4.z)

where q is a constant and q e constitutes a rate compensation term.

Steepest descent requires parameter a_Justment at & rate proportional

to the local slope of the error criterion function.

=-KVf , (4.z)

_f
where K is a positive _n constant. The gradient components -_. are

-1
_z

expressed in terms of the parameter influence coefficients _-_i = ui of

the model output variable z. Using Equation (4.1) one obtains

(4.3)

Since the order of differentiation with respect to t and _i can be

interchanged, if z i8 a continuous and differenti&ble function of

both variables,

:_ (a._.) = _ az

Thus Equations (4.2) and (4.3) can be combined to yield

(4.4)

&i = -K (e + q,'.')(ui + q Gi) (4.5)



To determine parameter influence coefficients on a continuous

basis a set of additional differential equations must be programmed

on the computer as follows. By partial differentiation of the model

equation (2.17) with respect to_ I the new equation

+% =

is obtained which reduces, by virtue of (4.4)_to

(4.6)

(_._)

where uI must satisfy the initial conditions

Ul(O)=O, Gz(o)=o

since the initial values z(O) and z(O) are independent of _I"

Equation (4.7) known as sensitivity equation must be solved simulta-

neously with Equation (2.17) to yield the parameter influence coef-

ficient uI and hence the gradient component af
a_I"

The forcing terms x and x being independent of _1 do not appear

in (4.7). The other components _--_f are obtained similarly by pro-
a ui

gramming and solving additional sensitivity equations with respect

to _2' cz3' _4" These equations are given below.

U2 + Ul Gz + c_2u2 = -z (4.8)

_3 + (Xlu3 + aZ u3 = _ (h..9)

_4 + CXl_4 + °_zu_ = x (4.1o)

All initial values must satisfy the conditions ui(O ) = O,

ui(O) = O. From these equations the following relationships

between uI and us, u3 and u4 can be derived as discussed in Section 5.6.

U8 = Ul
(4._)



4.2

The computer circuits for generating the influence coefficients

Ul, u2_ u 3 and u 4 are shown in Figure 4-1. The relations (4.11)

simplify the computer implementation. The simulation of the model

equation is shown as circuit I. Circuit 4 representing Equation (_.2)

generates the parameter values _I' _2' a3 and _.

A mathematical problem inherent in this approach to gradient

computation is that the _i terms were assumed to be time-invariant.

Actually_ under conditions of continuous adjustment of the coefficients

_i the gradient components can be determined only approximately, where

the approximation error depends on the rate of adjustment.

Determination of Parameter Influence Coefficients of a Nonlinear Mbdel

Linearity and time-invariance of the model differential equation

is not a pre-requisite for performing the gradient computation dis-

cussed above. However, in the case of time-variant or nonlinear dif-

ferential equations the structure of the sensitivity equations no

longer resembles that of the original differential equation as closely

and the computer programming becomes somewhat more complex.

The mathematical model of the pilot used in Task 3 includes three

nonlinear terms, a cubic of the input variable, a dead space character-

istic acting on the input variable, and a limiter acting on the output

variable as discussed in Section 2.6, (see Equation _.19). Ignoring

for the moment the two "non-analytic" second and third nonlinear terms,

the parameter influence of the cubic term will first be derived. The

system equation then becomes

+sli +a_y ffi a3_ +a_x +a_ 3P

and the model equation with adjustable parameters _, a_, ..._ a5 is

given by

+o_I i +a 2 z =a3_ +a_x +a_ 3

To derive the sensitivity equation in _5' Equation (4.13) is differ-
Jz

entiated term by term with respect to _5" Substituting u 5 = --
one obtains _ _5

x3
_5 + axe5 + _zu5 ffi
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This procedure is essentially unchanged from the derivation of the

sensitivity equations for =3 and (x_. The cumputer implementation of

E%uation (_.14) and the parameter adjustment circuit for =5 are illus-

trated in Figure 4-_.

The dead space characteristic x d = f2(x; =6) represented by

F_uation (2.18) will next be considered and the influence of =6 on z

will be derived where =6 represents half of the adjustable deadspace

in x d. The parsmeter influence is defined by u 6 _ z
= _'_6" Differentiation

of F4u&tion (2.19) with respect to =6 (where the cubic term has been de-

leted for simplification) yields the sensitivity equation

id _ Xd z _ Xa
(_.15)

x d
The term--= gd(x) poses no problem conceptually, but exhibits Jump

_a 6

discontinuities at x = _ =6"

Xd J -i

gdCX) o+i

x >o_ 6

if l l_< =6

x<_ 6

(_._6)

xd

The term _ can be derived by interchanging the order of differ-

entiation with respect to t and =6' provided the derivatives exist

everywhere in the range of interest. This is not the case at the Jump

discontinuities of gd(X). To eliminate this difficulty a continuous

slope change over a small interval Ax T of the input variable x at

x = + =6 is introduced to assure differentiability. The deadzone char-

acteristics with rounded corners shown in Figure _-3 is a good approxi-

mation of the ideal characteristic. It is actually a more realistic

representation of many threshold phenomena observed in prmctice_ e.g.,

the pilot's threshold response. Figure 4-3 also shows the deriva-

tive gd(x) and the term _=----_ required in Fxluatlon (_.15). Interchange
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of the order of differentiation yields

-mx during transition interval

0 elsewhere

(4.17)

The transition slope is given by

m : i/_x T (4.18)

As Z_XT-_O this representation of gd(x) at x : G6 approaches the

jump discontinuity. During each transition interval the term

£d
-- introduces an impulse proportional to x with a large peak
_a 6

amplitude ifZ_x T is short. The effect of such impulses on the output

u6 of a damped second order system, Equation (4.15)_is negligible

compared to the other input terms. Hence the sensitivity equa-

tion (4.15) is in effect approximated by

u6 + _id6 + _2u6 = (54 + _5 Xd2) gd (x) (4.19)

and is implemented on the computer in this form. The partial deriva-

tive @d(X) is represented simply by an on-off term controlled by a

relay plus dead space 5 6 . The computer circuit for the ad;_ustable

deadspace characteristic is shown in Fi&are 4-2b.

Similar considerations apply in the derivation of the parameter
_z

influence _--_ = u 7 where 57 is the saturation level of the limiter

characteristic used in the nonlinear model.

%

ZL

: if I_I <_ a7 (4.2o)

z < -a 7

o >
: . if (_.2z)

z Ill-<

56



_.3

Adjustment by the method of steepest descent requires the formtion

of u 7 and uT" Equations (_.20) and (_.21) yield

u7
_ZL I 1 z > u 7= ' o if z < a7

-I z < 4 7

(_.zz)

except at points z = _7
(_.z3)

As in the ease of dead space the derivation of the term u7 presup-

poses differentiability of zL (a, _7). The problem is circumvented

by defining a transition interval/_z T in the variable z at

z = _ uT" At each passage of the transition zone a z - impulse

occurs in u7 which can be neglected for practical purposes. A

sensitivity equation for u 7 and u7 is unnecessary. The generation

of u 7 reduces to a simple switching arrangement (See,F_gure _-_)_

Extension of the Continuous Method to a Two-axls Model

coefficients _i' _i'_l "'" of the two-axis model postulatedThe

in Section 2.7 can be determined by means of the continuous model

matching technique developed for single axis tasks. For the purpose

of this stud_ a sequential parameter optimization of two individual

"operator channels" provided a reasonable simplification, reducing

the number of parallel parameter adjustment circuits from 8 to 4

in the absence of coupling terms in the model.

To further reduce the number of sensitivity equations required

for this task the approximations g/yen by Equation (_.ll)were used.

This permits the generation of the parameter influences u I and u 2

by one computer circuit, and u 3 and u_ by a second circuit. The

second parameter influence circuit can be eliminated entirely since

u 3 and u4 are obtainable from the circuit which generates the output

Separation into 2 slngle-axis operations is justifiable since two

distinct error criteria

fv = ½ (ev + qev )2 _nd fh = ½ (eh +qeh )z

have to be minimized individually.

3?
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variable z. This requires a modified computer circuit for z

similar to that used by Adams (_). According to Equation (2.17)

z results from linear super-position of the two terms 63x and c_x.

On the other hand u 3 and u 4 satisfy the equations

Therefore

z = 63 u3 + 6_ _ (_.zS)

Equation (_.25) omits the minor effect of initial values in z

and _. The corresponding computer circuit is shown in the Figure _°5

below.

The computer program for finding the parameter influences of

cross-coupling terms _1' _2' "'" is derived by extension of the

above techniques. Using the notation

_z

B---_= uB3 (_.26)

it follows from Equation (_;2_,) that uG3

equation

_B3 + _ uB3 + az u_3 --xh

must satisfy the sensitivity

(_.27)

Figure 4-5. SimplITicd Computer Circuit for

,z I u3:and U_,
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Similar equations yield the parameter influence coefficients U_l,

u_2 , etc. These coefficients can be obtained from the same parameter

influence circuit as Ul,U2, by switching the forcing function in turn

from zv to Xh, Xh' Zh' ... etc. The sensitivity equation for u¥2

requires the product XvXh, as forcing function while for U/l a more

complicated term (zv zh + #i Zh U_l) is required.*

4.4 Computer Program for Iterative Parameter Adjustment

The iterative model matching technique was introduced to circum-

vent the mathematical difficulty associated with gradient computation

in the continuous adjustment technique and to minimize stability prob-

lems in the adjustment loops. All parameters are held constant during

time intervals of gradient computation, and adjustments are made step-

by-step during successive reset periods. In addition, the previous

computer program for finding partial derivatives _z was replaced

by a program of finite difference approximations. The block diagram

(Figure 4-6) shows two models operating at slightly different settings

of one parameter. The first model yields the output signal z. The

second model solves th _, _ame equation subject to s variation _i of

the parameter _i yielding the output signal _i" The partial deriva-

tive is thus approximated by

azi _ z(_i)- z(_i+ a_i) _ z - 9i (4.28)
zi _ A_i _i _i

This computer program requires separate circuits for each A_ i to

generate the finite differences _z i : z - _i" A considerable amount

of computer equipment can be saved by sequential operation which re-

quires implementation of the original unperturbed model equation plus

one model equation subject to parameter variations A_i, one at a time.

The iterative method is programmed on the computer as follows.

During each iteration the differential equation of the model given by

(2.17) is solved with fixed parameters _ (k) viz.
i ' '

+_i (k) _+_2 (k)z :_5 (k) _+%(k) x (4.29)

The second-order effects of coupling parameters in one channel upon

the sensitivities of coupling parameters in the second channel were

ignored.

4O
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I P_ruR_oNOOE¢. V-

Figure )+-6. Block Dla_ram of the Iteratlve

Pare_eter Adjustment Strategy

where the superscript (k) refers to the parameter values reached

after the kth iteration. The perturbed model equation Is

a3(k) + Z_cz3 '_ 3,J_ i +

1 ,l=JThes_bol _i,J= 0 , i _J

%(k) + Z_a_ _'Jl x

I indicates parameter _i
where

J indicates the step within

the kth iteration

denotes the selection of one out of four varlations_ i In solving

(4.30). The computer program Is shown in Figures 4-7, _-8 , and

_-9 • Circuits (i) and (2) are used to generate input quantities

from the tape recorder, the disturbance function, the human operator

output, and their derivatives. Circuits (3) and (4) are the model

and the perturbed model respectively (see Figure 4-7).

(k.3o)
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The error criterion selected for this program has the form

T

F =/ (e 2 + @2)d t

0

(_.$I)

In terms of human operator output and model output this may be

expressed by

T

F(_i) =/ _z- y)2 + (&., _)2] dt

0

(_.3z)

On the other hand, the error criterion involving the perturbed

model output iS

0

(4.33)

Q(k)(T)

Thus the finite difference quotient Jk---E-Fis

1

o/T_( _i-Y)Z+ (_i-y)2_dt-/T [(z-Y)2+ (z-y)2]dt (_.S4)
0

This quantity is computed by circuit (5) (see Figure 4- 8).

Circuit (6) is a memory circult which stores successive values

(k)
of _i , viz.

(k+l) (k) (k) Ck)+ Qi(k) (T)
a i = a I + F-_ai = a i X (_-35)

A constant step size_-_as used in all successive computer runs.

This step size is equivalent to the adjustment gain K used in the

continuous n_del matching technique. Circuit (7) generates the

switching logic for the_(xi(k) The Tour outputs of the circuit

are energized cyclically to adjust the parameters step by step.

Circuit (8) controls the computer in accordance with a previously

recorded mode control signal (see Figure 4-9).

4_



4.5 Relaxation Technique

_'ne relaxation technique employed in this study was simplified

greatly by eliminating the automatic parameter adjustment loop. It

only requires the implementation of one model equation and an error

criterion function which is minimized by manually adjusting potenti-

ometers. The method employed is described in Section 2.4 . The com-

puter diagram is shown in Figure 4-10. Circuits (2), (3), (5) and

(6) are input gain circuits and derivatives, respectively. Circuit (7)

controls the modes of the computer.
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. ANALYTICAL RESULTS

One of the objectives of this research program has been the clari-

fication of some of _he theoretical problems connected with model match-

ing techniques. Among these problems, the following examples can be

cited:

i) Ornstein ( _ ,16 ) has noted that the model parameters do not

necessarily converge to correct values, even when a HDdel is

matched _6o a known system, and that iteration may be require@

to improve the reliability of the computer results.

2) Cross-coupllng or interaction among parameter adjustments has

been observed by _rgolis (8) and by Adams ( 2 ), and sub-

stantiated by early ST[, results.

3) The dependence of the parameter adjust_ents on the choice of

criterion function has also been known for some time.

Margolis (8) used criterion functionS of the form

fl = e2 .2 ..2+ qe +re (5.1)

and

f2 : (e + qe + re')2 (5.2)

(where e is the output error or model-matching error

and q and r are constants) and he observed significant

differences in parameter adjustments when f2 was use_

instead of fl and when q and r were given non-zero

values. Ornstein ( 5 ) used an absolute value error

criterion of the form:

lol

with considerable success. However, this criterion function

was not suitable for models with certain nonlinearities,

and Humphrey and Bekey (IO) were forced to abandon it and

return to a quadratic form.
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5.1

4) Iterative techniques of parameter optimization generally

use integrated error criteria, such as

F1 =/fT e_"dt (5.3)

J0

where T is a time interval during which the parameters

remain constant. It has been shown (13) that criteria

such as F I make possible a discrete steepest descent

process. However, the use of instantaneous error criteria

such as fl' f2 or f3 with the output error method raise

fundamental problems regarding the definition of the local

gradient.

The four problems cited above have been considered under the

theoretical portion of the present study. Considerable effort was de-

voted to studying the nature of the criterion surfac6, the interaction

among parameters during the adjustment process, and the effects of the

choice of criterion function on the convergence and stability of the

model matching process. The major results of these investigations

are summarized in the following paragraphs.

The Nature of the Criterion Surface for Iterative

Parameter Optimization

Consider an iterative parameter optimization process with

:jTF (e2 + _2)dt

where the parameters _I' (_2' a3

constant for intervals of T seconds.

ordinary function of the parameters, i.e.,

(_.4)

and _4 of Equation (2.17) are hel_

Under these conditions F is an

F = F(%, _2, _s' =4) (5._)

and profiles of F as a function of any parameter c_i can be plotted by

holding the other three parameters constant, and evaluating F for a

sufficiently large number of values of _i to obtain a curve.
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5.2

An inspection of the characteristics of the criterion function in

the neighborhood of its minimum helps to explain the behavior of the

adjustment process at the approach to steady state. Figures 5-1 to 5-4

show profiles of F((_I, 52, 53, 54) plotted versus one parameter at a

time exhibiting the minimum, with the other parameters held fixed at the

respective minimizing values. The curves pertain to the case of an analog

model of known parameters, rather than to a human operator and hence have

a deterministic character. One observes that the minimum with respect to

parameters 52 and (x4 is quite flat, whereas the minimum is sharper in the

case of parameters GI and 53. This explains why the minimum-seeking proc-

ess yields well-defined parameters _i and 5B and poorly defined values

52 and s_, and hence partly explains the difference in the statistical

variation of solutions exhibited in the scatter plots of experimental

data obtained in Phase i (Figures 6-1 to 6-3 ).

It should be noted that the profiles of Figures 5-1 to 5-4 are based

on a known transfer function and not on actual human operators. Similar

contours can be obtained for human tracking data.

The Nature of the Criterion Surface for Continuous Parameter

Optimization Methods

In the iterative technique discussed in the preceding paragraph it

is possible to obtain contours where F = constant in the parameter space.

For example, Figure 2-2 in Section 2 shows a typical set of contour lines

in a parameter plane defined by two parameters GI and 52. Such contours

could be constructed by taking corresponding F values from the criterion

function profiles of Figure 5-1 (F vs. 51) and Figure 5-2 (F vs. 52)

and plotting the respective values of GI and G2' In the case of continuous

parameter optimization a different approach will be used to analyze the

criterion function and its contours in the parameter space. The output

error e = z - y in the vicinity of the minimum is expanded in a power
.

series in terms of the deviations L_si, Z_5 j of the parameters Gi' GJ

The discussion will be restricted initially to parameter adjustment in

two dimensions, assuming that all but two of n parameters have been

adjusted to, and are held fixed at their correct values.
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from their correct values, viz.,

_ee

e _ /%_i + --2_j + e
_i _ _ j res

(5.5)

and since

_e _z

0---_1 = _---_ = ui ,

e T- ui_ i + uj_j + ere s
(5.5a)

Higher than first order terms are neglected.

The term e includes a collection of terms not dependent onA_
res

which contribute to the instantaneous model matching error, such as

uncertainty in the structure of the unknown system equation, random

perturbations, computer inaccuracy, etc.

Using the expansion of e by Equation (5.5), one obtains for the

error criterion

f = _(ui_ i + ujgh_j + eres) 2 (5.6)

Therefore the contour lines f = const, are described by

(ul _i + uj _CZj + ere s) = _+ C
(5.7)

which is the equation of a pair of parallel straight lines in the

_si,L_(zj plane, (see Figure 5-5). A similar result was obtained

by Clymer et al, (16). The effect of ere s will be ignored for the

moment. The contour lines intersect t_ axes _i' _Gj at the points

C
A i = +

-- U i
(5.8)

C
A.=+--

j - uj
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and have the slope

u i
m =

c uj
(5.9)

Due to time-variation of ui and uj the position and orientation

of the contour lines vary. Conditions of zero or infinite slope

occur whenever ui or uj, respectively, change sign. The criterion

function is zero when C = O. In this case the two contour lines merge

into a single line passing through the point _i = O, _j = O. The

residual error term produces a parallel shift of the contour lines

without altering their distance; the contour C = 0 is shifted from the

origin by a distance

e
res

P = (5.10)

._/ 2 2 'u i + u.J

Since the criterion function is generated by the family of

parallel lines and since f increases in proportion with C 2 it is re-

presented geometrically by a cylindrical surface with a parabolic

cross-section. This cylinder is tangential to the Z_ i - Zkaj plane

along the contour line C = 0 (see Figure 3-6). The time-variation of

ui, uj causes the cylinder to change orientation in accordance with

the rotation of the tangential line C = O. In the absence of residual

errors the axis of rotation remains fixed being the f-axis of the 3-axis

system shown in Figure 5-6. With non-zero residual errors the instan-

taneous axis of rotation is shifted randomly but always remains paral-

lel to the f-axis.

The fact that the instantaneous criterion function f (_i' aj)

does not form a bowl-shaped surface with closed contour-lines must be

noted here to avoid misconceptions as to the manner in which the de-

scent path is formed. If the criterion surface were time-invariant

a descent to the proper end condition,s i = O, /kGj = 0 would not be

assured. Instead, all descent paths would terminate on points along the

line

ui2_(_ i + uj_C_j = 0 (5.11)

(or on a shifted line for ere s _ 0). Time variation of ui, uj and

.

54



Contours

Figure 5-5

F = const in a_i"_ -P_

F

Aj

L_A_

-C

+C

C=O

\

Figure 5-6 C=O

Criterion Function F Versus AO_- _j

A_



the resulting rotation of the contour line C = 0 around the point

_i = O, _j = 0 assures convergence to the proper end condition.

With non-zero values of e the intersection of successive contour
res

lines C = 0 shifts continuously, causing the descent path to move

randomly about the origin at distances which depend, of course, on

the magnitude of e
res"

It is interesting to note that the rotating cylindrical cri-

terion surface may, under certain conditions, define a closed, bowl-

shaped envelope surface, such that in effect the steepest descent on

the cylinder becomes, in the average, a descent on the envelope surface.

This effect can best be illustrated in two dimensions by deriving

the envelope curves for the family of rotating contour lines in terms

of/_i,/_j coordinates. The envelope of the contour lines is ob-

tained from

• .Ac_. ¥ c = o
H -- f - const = O: u i /k(_ i + uj

8 H _iFk (_i&t = O: _ + 6j/k_j = O
(5.12)

This yields the coordinates of the envelope

/k(_. = + C J

iE - uiu - u uiJ J

Ao_. = %C
JE

ui

uiu j - uj Gi

(5.13)

Consider for example the parameter adjustment of G3' a4 _n the case

of sinusoidal excitation, which is characterized by influence co-
w

efficients u4 = A sin _t _Id u 3 = u4 = A _ cos o_t

terms into Equation(5.13) yields:

A_3E C= AT cos _t

C

/k_l_ E - A sin _t

where C 2 = 2f

Introducing these

(5.ll_)

The functional relation u 3
Section 5.6.

= d 4 will be further discussed in
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The envelope surface represented by Equations (_.1_) has elliptic

nroee-seetlone (contours), as illustrated in Fl_re 5-7 vith seai-

m_or axes Increasing in proportion vlth C. For the special ease m - 1.0
C

the contours are eircls8 vith radius T "

\ \ I /

Invelol_s o1' Contour Lines f. coast, in the A_, _ Plane

These results derived for tvo parameters my be extended to

higher dimensions. In the three-dimnsional case the F-contours

are characterised by a pair of pezallel planes vhieh intersect the

psramter axes at

A1 + -_1 C A3 + u-_-"_ ,A2"+__2 , "_

aFe sepaa.ated by the dtstaace 2C/ "_ul 2 + uZ 2 + u32.and

(5.1_)

Tlme-w_lation of the u t cause the contour planes to envelop a set

of nested centour surfaces. The descent paths aust penetrate these

contour sm-t_aees orthogonally in converging to the center at C : O.

In the four-diaensionat case the contour planes become hyperplanes

enwelopi_ s set of 3-dilenstonal closed hypersurfaees.
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5.3

It is interesting to consider the possibility of uncontrolled,

large excursion of the descent paths in the directions left open

between parallel contour planes or hyperplanes. The simultaneous

adjustment of more than two or three parameters at a time can become

quite problematic, as indicated by some of the parameter tracking

records, and more research is needed to establish sufficient assurance

of convergence.

The above results explaining the character of the criterion func-

tion raise some questions as to the nature of the parameter adjustment

paths and make it mandatory to examine the behavior of the time-varying

gradient vector. These questions will be considered in the following

section.

The Nature of the Gradient in Continuous Model Matching

The gradient vector in the iterative adjustment process is de-

fined by

_F-- (_) = I _F _F _ F _F ]2 ; J ..,

where n refers to the _mber of adjustable parameters. An analogous

definition is not possible for the continuous method since the parameters

are varying and the partial derivatives are not defined. The partial

derivatives generated by the computer in terms of the variables ui are,

at best, approximate gradient components if the parameter adjustment

is a slow process. In order to circumvent this difficulty and gain

some insight into the nature of the gradient: it is possible to compute

the partial derivatives u i (influence coefficients) oy opening the ad-

justment loops, thus keeping the parameters constant.

The previous section showed that for the criterion f = ½ e 2, the

contours for f = const, are pairs of straight lines. The gradient

vector always intersects the contour f = const, at right angles, and

bhe rotation of the contour surface results in a time variation of

both the direction and magnitude of the gradient vector.

Let the criterion function be f = _ e 2. Then, the orientation of

the _radient in a two-parameter space defined by a i and aj is given by

f/_a e u. _j
m - j - J = (5.16)

g 2 f/_i e ui u.1
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Consider now a specific case. Let the system be defined by Equation (2.17)

with _I and 5 2 being held fixed, and assume a sinusoidal excitation

signal

x(t) = D sin

The influence coefficients u 3 and u_ are obtained as solution of the

sensitivity equations

+ e1 u4 + 52 % = x

(5.17)

and consequently they maybe written as

u4=Bsin (_+_)
(5.18)

u 3 = B _ cos (a_ +@)

where B/D is the amplitude ratio obtained from solution of the second

order systems of Equation (5.18) and_is the resulting phase shift.

Hence u4 i
tan @ : m .... tan (a_t + ##) (5.19)

g u 3 m

where @ is the orientation angle of the gradient vector relative to

the _3-axis. @ thus becomes a periodic function of time. For the

case _ = 1.0 Equation (5.19) yields

: _ + _± k_ (_.2o)

The gradient vector oscillates both in direction and magnitude, as

indicated graphically in Figure 5-8. This result agrees with the

previous findings, discussed in Section 5.2, regarding rotation of

the contour lines. Note that the parameters u3 and_ 4 are being held

fixed at the point where_7--_ is evaluated.

Experimental verification of these results was obtained by using

the computer to plot the loci of the open loop gradient in the _3_4

plane with a sinusoidal input. Figure 5-9 shows these locl at various

trial points. The parameters O_ and 5 2 were set at their correct

values, i.e., they were equal, respectively, to the system parameters

aI and a 2 .
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Fignlre 5-8

Time Varying Gradient in a3, _ Plane

As expected, the _3' _4 loci of the time-variant gradient vector

[_f _f
]

_---_ , _ j are nearly circular, describing two full rotations

for every period of the sinusoidal excitation signal. The loci pass

through the trial point during every full rotation. At these instances

the gradient has the magnitude zero. For random excitation of the model

matching system the loci have irregular shape with varying time-intervals

per full rotation, i.e., between passages through the trial point. The

implications of this result are significant. It can be observed that

the gradient sweeps an angular domain of 180 degrees in the _3' _4 plane

and that only the mean orientation of the gradient vector points in the

desired direction. In other words, the criterion function forms the

time-varylng surface discussed in the previous section. This suggests

low-pass filtering of the gradient components _ f in order to empha-
_.

size the preferred mean gradient orientation. FigUre 5-10 is a sketch

of different open-loop gradient loci obtained with and without low pass

filtering.
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5.4

sradient
orientations

after filtering

before _ trial

filtering I _ point

_...=

/ after

• p_/ filtering
/

I

/

/

s

correct

parameter values

gradient locus
before filtering

Open-Loop Gradient Loci in _3' a_ Plane before

and after Filtering of Output Signals

Figure 5-10

The time-varlatlon of the gradient leads to an interesting ob-

servation regarding the speed of convergence for a model matching

problem with many parameters. The probability of the gradient being

oriented within the desired angular range is less than i inasmuch as

the vector points in other directions part of the time. If, for

example, the vector points in the desired direction only 50_ of the

time in a two-parameter adjustment problem, this probability is re-

duced further in a three-parameter problem, and still further in a

f0ur-parameter problem, since the desired direction encompasses less

and less of the total spatial angle over which the gradient vector

can sweep. As a result, the settling time increases at least in pro-

portion with the number of parameters to be adjusted simultaneously.

On theoretical grounds the time would tend to increase with powers

of 2n where n is the number of parameters, considering the geometry

of angular sectors in a hyper-space.

The Adjustment Path in Parameter Space

The time-variation of the gradient vector examined above sug-

gests that when the loop is closed to allow continuous parameter

adjustment, the rate of adjustment will also be time-varying. The



continuous adjustment method is based on the steepest-descent principle

expressed by

m

p = -K _ (p) =_"-K _-_(p) (5.21)

where G (p) is a vector approximately equal to the gradient of f and

p is the parameter vector. _ne degree of approximation inherent in

Equation (5.21) improves as the rate of adjustment decreases. There-

fore_ at points where _F_(_) = O, the rate of adjustment p will also

be zero. The adjustment path resulting from a sinusoidal input is shown

in Figure 5-11 for several values of adjustment gain K.

The nature of the envelope curves discussed in Section 5.2 above

is inferred by reference to Figure 5-12 which shows the adjustment paths

from different initial conditions. The envelope curves were shown pre-

viously in Figure 5-7 to be ellipses. Consequently, the gradient descent

paths are seen to approximate the radii of ellipses when the rate of

descent has decreased sufficiently. The adjustment paths for random

excitation for several values of adjustment gain is illustrated in

Figure 5-13.

An important result of this analysis is the confirmation of the

original conjecture that for sufficiently low adjustment rates a gra-

dient descent path is being followed. Serious questions regarding the

nature of the gradient approximation used only arise at instances of

maximum adjustment rate. Although the descent path is confined within

the closed contours of the envelope surface if the rate of adjustment

is sufficiently slow, it can be seen in Figures 5-11 and 5-12 that for

large values of adjustment gain K a path may develop which at a subse-

quent time increment leads in a direction nearly parallel to the genera-

tor lines of the instantaneous cylindrical contour surface so that large

and uncontrolled excursions from the desired end point may occur. This

can be expected if the excitation frequency _, for sinusoidal excita-

tion or the bandwidth of excitation frequencies in random excitation

is too small in comparison with K. Additional study of the desired

relationship between K and bandwidth of the excitation signal will be

necessary.
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5.5 Effect of the Choice of Adjustment Gain K

The role of the gain factor K in the parameter adjustment process

and the question of whether equal or unequal values of K should be se-

lected in the different adjustment loops is of major interest from a

standpoint of optimizing the overall performance of multi-parameter

adjustment. The following discussion is concerned with those character-

istics of the descent path which depend on the choice of K and on the

scale of presentation in the parameter space.

Steepest descent requires that the adjustment path always be tan-

gential to the local gradient vector V---f. The components d_xi and d_j

of a path element ds in the 2-dimensional case must therefore be chosen
_f _f

in the same ratio as the gradient components _ and _ , thus re-

quiring equal gain factors K in both dimensions, i If the _ain factors

K i and Kj are chosen unequal a path other than steepest descent will

result. Different paths obtainable by different ratios K i : Kj will

all converge to the desired end point, but from different directions.

These paths are illustrated in Figure 5-14.

Using the concept of effective closed f-contours established in

Section 5.2, one finds that for circular contours the steepest descent

paths are radial, whereas for elliptic contours the steepest descent

paths are curved, tending on approach to the minimum to become tangen-

tial to the larger of the two major axes (see Figure 5-15).

It is noted that a choice of unequal scale factors for the coordi-

nate axes in the parameter space does not alter the character of the

descent paths, but only has the apparent effect of changing orthogonality

of contour crossings. This effect is illustrated in the lower half of

Figure 5-15.

The question arises here what normalized scaling must be used for

the various C_i in a plot of the descent path in order to show orthog-

onality with respect to the f-contours if all adjustment gains are equal.

To resolve this question it will be necessary to consider the implications

of parameter adjustment in accordance with

_f (5.22)
ai :
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Figure 5-14

Dependence of Descent Path on Choice of Ki, Kj
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5.6

5.6.1

Only the numerical value of each parameter _i' regardless of physical

significance, physical dimension, or computer scaling, is controlled
_f

by the adjustment loop on the basis of the numerical value of __i "

The parameters implemented on the computer may be considered as non-

dimensional quantities (potentiometer setting times associated amplifier

input gain). The gradient components also are non-dimensional; conse-
-i

quently all adjustment gains K must have the dimension sec to assure

dimensional agreement on both sides of the adjustment equation (5.22).

Different physical dimensions of the various system parameters can thus

be ignored from the standpoint of parameter adjustment. For a rigorous

treatment of parameters and their physical dimensions it is appropriate

to express each (physical) coefficient _k as the product of a pure num-

ber _ and a dimensional factor of unit magnitude _k'

: (5.23)

The normalized plotting scale of the parameter Gi as programmed on

the computer is in the same non-dimensional units as those of _._. This

procedure has been followed in this study_ the parameter plots being

consistently labeled in non-dimensional units. However, different axis

scales were adopted for convenience in some of the plots shown.

Cross-coupling or Interaction Among Parameters

Interaction effects can be observed during simultaneous adjustment

of several parameters in many of the figures shown in Appendix A. This

section analyzes these effects and the underlying mathematical relation-

ships.

Functional Relation Between Sensitivity Coefficients

Consider the sensitivity equations for uI and u 2 for invariant

(_l I O_2

[*'2 + oh__G2 + 52 u2 = -z (5.25)
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The initial values must satisfy the condition Ul(O ) = Ul(O) = up(O) = u2(O)= O.

Time-differentiation of Equation (5,25) yields the approximate relation

~ (5 a6)ul = u2

Transient differences between uI and u2 are caused by a non-zero initial

value

_2(o): -z(o)

Note that _i(0) equals zero by definition but "_2_Vjt_in general does not

equal zero.

Similarly, the corresponding two sensitivity equations for u 3 and u4

_3 + °1 d3 + az u3 = _ (5.z7)

2_ + _i _4 + _2 % = x (5.28)

with initial values u3(O ) = u3(O) = u_(O) = u4(O ) = 0

yield the approximate relation

u3 = % (5.29)

which is valid after transient differences between u3 and u4 due to

x(0) _ 0 have subsided.

Combination of the sensitivity equations (5.25), (5.28) and the

original model equation

+ _I ;"+ _zz = _3 _ + % x (5.3o)

yields the approximate relation

u2 x = -u4 z (5.31)

which is applicable after transients due to z(O) and z(O) have

disappeared.

It is important to note that Equations (5.26), (5.29) and (5.31 )

imply tlme-inv_riant coefficients. If _l and c_2 are time-variant,
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5.6.2

a time-differentiation of F_uation (5.25) would yield

lie

In this ease Equation (5.26) implies an approximation other than the

initial condition effect previously noted. For sufficiently small

adjustment rates _, _21 the approxiw_tions (5.26) and (5._) are use-

ful in providing estimates of the relative magnitudes of the ui terms.

They also permit a very considerable simplification in implementing

the parameter adjustment system on the computer. This computer pro-

gram includes only Equations (5.25) and (5.28) to generate Ul, u 2 and

us, u4, respectively. The approximation has been used successfully

in several phases of the stud_ to save computer channels, as explained

in the Computer Implementation Section. Similar formulations have

been used by Klenk ( 17 ) and Adams ( 2,18 ) to simplify the computer

program.

Precision of Parameter MiLtching

As will be noted in the discussion of the computer results, dif-

ferent parameters of the system are matched with different degrees of

precision. The relative magnitude of the sensitivities ui helps to

explain this fact. Equation _5.5) shows that the instantaneous model

matching error constitutes a weighted average of the individual adjust-

ment errors/_ i where u i are the weiEhtinE factors. Clearly those

adjustment errors which have dominant weighting factors will be adjusted

with the greatest precision. Since u 3 dominates in many of the cases

examined, the precision of the _3 adjustment is generally quite high.

By contrast, u 2 is dominated by the other sensitivities and hence _2

is poorly defined. These results are also borne out by Figures 6-1 to 6-3

of Section 6.

An investigation of the underlying mathematical relations will

clarify the picture. The following discussion applies rigorously only

to the linear time-invariant case, but serves to explain basic trends

in the time-variant and nonlinear cases as well.
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5.63

It is first observed that the random excitation signal x(t) in-

cludes frequencies up to 5 rad/sec due to human tracking behavior.

Therefore x has higher amplitudes in the upper frequency band than x,

and causes u 3 to dominate u 4 (see Equations (5.27), (5.28), (5.29)).

Similarly, since z and z follow x and x, respectively, it is expected

that u I will dominate u2, depending on the filtering characteristics

of the model equation (5.30). Typical values of transfer function

gain for the time-invariant system over the range of input frequencies

are

where X and Z are Laplace transforms of x, z. An estimate of u 2 and

u 4 magnitudes can be obtained on the basis of Equation (5.31), viz.,

U 2 l+I
Therefore, the sensitivity term u4 dominates u2 at least by a ratio of

3:1. This result is confirmed by many of the time histories obtained.

For the conditions un _"which the model matching system was operated

it was observed that u 3 dominates u4 which in turn dominates u 2.

Also, u I dominates u2, hence the poor definition of _2 and the gen-

erally good definition of _3 observed in many of the computer runs.

The relatively larger values of u 3 also tend to make the _3 adjustment

loop the most critical in terms of stability.

Analysis of Cross-coupling Effects

Considering the steepest descent equation

_i = -K _f = -K e u i i = I, 2, 3, 4. (5.33)

it can be seen that the adjustment rate is proportional to the

model matching error e and the sensitivity ui. The error term e

may again be expanded, in first order approximation, in terms of

individual parameter errors/_Gi, viz.,

i_ /_4e = u 1 + ''' + u4 (5.B4)
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where higher order effects, noise, and uncertainty in the structure

of the mathematical model are omitted. This equation implies e = 0

when all parameters _i have been adjusted to the desired values ai,

such that /_i = O. (This restriction will be removed later. ) Com-

bining Equations (5.33) and (5.34) one obtains

4

_i --''Kui Luj_J i =l, 2, 3, 4.

J--l

parameter adjustment rate _i is sensitive, to a varyingHence each

degree, to all of the instantaneous parameter adjustment errors_t.

This sensitivity is expressed by the (approximate) symmetrical square

matrix (S) with time-varying elements

such that

(5.35)

Sij = u.l uj (5.36)

a -K (s) (5.35a)

where _ is the rate of change of the parameter vector'_. K may be

a scalar if the same adjustment gain is used for all parameters;

otherwise it becomes a constant matrix.

If the adjustment of each parameter were independent of all the

other parameter-offsets, (S) would be a diagonal matrix. Actually,

the various parameter-offsets interact dynamically, the off-diagonal

elements of the matrix being the cross-coupling coefficients. Under

random excitation x(t) the cross-coupling terms may have small average

values, provided the u2i and uj terms are statistically independent.
The diagonal terms u. are non-negative and their average values tend

l

to be larger than those of the cross-coupling terms.

It was previously noted that the sensitivity terms uI and u S

dominate u 2 and u4, respectively. This is explained by the fact that

u I and u S are obtained as solutions of sensitivity equations in which

the time-derivatives z and x rather than z and x are the forcing functions

of Equations (5.24),(5.26). Considering the frequency content of the ex-

citation signal x ana the dependent variable z it follows that x and

have larger maximum excursions than x and z, respectively.
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These facts explain the prevalence of cross-coupling effects be-

tween errors in the 51 and 5_ adjustments which were observed in

Figures A-IO and A-15 . In Figure A-lO _ the variation in 51 which

was introduced by a sinusoidal perturbation of the corresponding system

parameter a I also caused sinusoidal variations in 5 3 . This effect in

turn caused secondary cross-coupling in 51 .

Cross-coupling effects are also noticed when all but one model

parameter are initially set at their correct values. During the adjust-

ment of the initially incorrect parameter some transients will occur in

•_,,_ remainir_ ......_.._+_a_ _i as a result of cross-couplingj accordin_ to

Equation (5.35) because the sensitivities ui corresponding to these

parameters are non-zero.

Equation (5.31_ in the above analysis is based on the assumption

that residual modeling errors due to model structure uncertainty, ran-

dom noise, etc. can be ignored. However, in the presence of residual

error this equation must be augmented by forcing terms proportional

to e
res

= -K(s)_ -Ke : (5.37)
res

Actually, since the ui, uj depend to some degree on all G k settings,

the equations (5.3_), (5._7) are not strictly linear.

In summary_ the following properties of the adjustment process are

derived from this mathematical formulation:

l) Cross-coupling effects are introduced by the off-dlagonal

terms u. u.. The magnitude of mean values as well as in-
i ,]

stantaneous excursions of u. u. relative to those of the
2 I. j

diagonal elements u. indicate the extent of cross-coupling
1

in the adjustment process.

2) In the case of random excitation s_gnals x(t) with zero mean

the influence coefficients u i are also random with zero mean

but u. and u. may be correlated so as to form a non-zero mean
i O

product. In the case where one influence coefficient is the

derivative of another, e.g. u i = u?, u 3 = u4 in linear _n_

variant systems the mean product tends to be zero.
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3) The instantaneous products may be large even for zero mean,

and integration may yield large disturbances in _i adjust-

ment. This is possible particularly with low frequency of

excitation which allows the products ui uj to maintain posi-

tive or negative values for extended periods of time.

Analysis of Model F_tching Using a Sinusoidal Excitation Signal

Indeterminacy of Model Parameters

The use of a purely sinusoidal excitation signal x(t) in some

portion of the analytical and experimental studies helped to clarify

fundamental properties of the parameter adjustment process. However,

from a practical standpoint such an excitation signal is unsuitable

since, in general, it does not yield unique parameter values if more

than two parameters are being adjusted simultaneously. This fact has

been observed experimentally during the computer study and can be

easily explained.

Let the system be described again by

+ aI _ + a2 y = a3 _ + a4 x (5.38)

and the model by

_'+al £ +a2 z =a3 _ +a4 x

This case permits exact model matching if all _i = ai"

(5.39)

The question

considered here is concerned with the uniqueness of this solution for

If individual parameter errors _i are assumed to existthe _'s.

such that

al = _i +_£

then for uniqueness of parameter definition an exact model match

e = z - y _ 0 must imply zero values of all_G i and vice versa.

In order to examine the behavior of the Z_'s Equation (5.38)is

subtracted from (5.39) yielding

(Y - E) + (a_.#- (_j.£)+ (a_ -=2z) : ",o_3 £ +_4x (5.40)
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For the case of ideal model matching, z-y _ 0, this equation reduces to

Z_ 1 9 +z_ z y -Z_ 3 _ -A_ 4 x --o (5.41)

This linear algebraic equation is satisfied by

2kG1 =/k_2 =/kG3 =/kG4 = 0

which is the correct solution to the problem, regardless of the nature

of the excitation x(t). Clearly, if the excitation is a random signal

or a composite of sinusolds no other solution is possible, hence the

correct solution Is unique. For the pure slnusoldal case

x(t) = A sin _t

which yields a steady state output

y(t) = B sin (_t + _)

The equation (5.41) is equivalent to two equations derived by separating

sine and cosine terms:

B _ cos_A_ 1

B _ sin_a _i

+ B sin_G 2 - A_&_3 = 0

- B cosmos 2 + A_G 4 = 0

(5.42)

In addition to the solution/_G i = 0 there exist infinitely many other

solutions making the parameter values indeterminate. By assuming fixed

non-zero values for two of the parameters the two remaining parameters

are uniquely determined. This result agrees with observations during

parameter adjustments performed on the computer: The indeterminacy of

two of the parameters appeared as drift or by settling on incorrect

terminal values (see Figure A-_).

In the more real_stic case of matching an unknown system the two

equations corresponding to (5.38) and (5.39) do not have exactly the

same form, hence residual terms will appear in _<luation (5.40) and

(5.41) even for a very close agreement of the output variables of y

and z. Therefore the condition of optimum match becomes an inhomo-

geneous algebraic equation in/_G i equivalent to (5.41) having unique

solutions for/_G, for random or random-appearing excitation signals.
l
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p.?.2 Model F_tching With Low Frequency Input

It is interesting to consider the special condition of very low

frequency input signals where the human operator can follow the dis-

played excursions with negligible phase shift.

mation of human response is given by

z--=kx

A reasonable approxl-

(5._3)

where k is the low-frequency gain (assumed constant under the given

conditions ). This yields the derivatives

_"_ k _ (5._)

Substitution of these terms into Equation (5.39) results in

u3 u4
_'+(_ k ) _ +(a2"-E--)z=° (5._5)

For arbitrary input signals no direct conclusion can be drawn from

this statement. However, if the input is a sinusoid of low frequency,

the output will be proportional. But for sinusoidal signals z it can

be concluded that the coefficient of z must vanish, and the coefficient

of z equals _where _ is the excitation frequency. Therefore,

u 3 =ku 1

It is again seen that two parameters in the set of four are inde-

terminate, i.e. only the combinations (U 3 - _) and (U 4 - k_2)

are determined in this case.

The coupling effects present In_l, u 3 and in U2_ U4 can also

be obtained by consideration of the sensitivity matrix

introduced in this section. Since all sensitivities ui

and are in phase with either x or R one obtains

uI =kl_

u 2 = k 2 x

= k 3U 3

u4 = k_ x

(5._6)

Sij previously

are sinusoids
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M_ere the k's are constants. Consequently, the sensitivity matrix

has the form

S

m

kl 2 (_)2 klk 2 x x klk3 (_)2 klk 4 x

2 2

k2k I x x k22 x k2k 3 x x kzk _ x

k3kl (_)2 k2k 3 x x k32 (_)2 k3k 4 x

2

[ k4k I x x k4k 2 x 2 k4k 3 x x k42 x

It can be noted that only three types of terms appear in this matrix:

namely, x 2 .2 .2, x and x x. The average or expected value of x 2 and x

is clearly positive, since they each represented squared sinusoids.

However, the average value of x x is zero. Therefore, on the average,

the x x terms do not contribute to their respective equations. Hence

the equation for _i has strong coupling from A _3" Likewise, a3 has

strong coupling from Zla I. A similar effect exists for a 2 and a 4.
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6.1

6.1 .i

EXPERIMENTAL RESULTS

The experimental work has been divided into two portions, as

follows :

a) Computer experiments designed to explore and improve model

matching techniques and to determine their limitations. These

tests were performed by matching the output of a known system

(a linear or nonlinear second-order differential equation) with

that of a mathematical model of the same form, whose parameters

were to be adjusted.

b) Application of the model matching techniques to actual human

pilot tracking data, recorded on magnetic tape. The form of mathe-

matical model used here was similar to that examined during develop-

ment of the techniques.

The results will be presented in two major portions in accordance with

classifications (a) and (b).

Experiments with Model Matching Techniques

In order to optimize the convergence time in the case where the

system to be identified has fixed parameters, the behavior of the contin-

uous model matching technique was examined for both slnusoidal and random

inputs. In both cases the effect of adjustment gain, initial conditions,

and criterion function on the adjustment path was examined. This study

was initiated with sinusoldal inputs to facilitate analysis of the adjust-

ment process.

Effect of Adjustment Gain

Consider first the effect of the adjustment gain on the time history

of the parameters. The theoretical aspects of this problem were discussed

in Section 5, and descent trajectories in the 53_ _ plane are shown in

Figure 5-11 (for sinusoldal inputs) and Figure 5-13 (for random inputs).

Corresponding time traces of the parameters 5 3 and 5 4 are shown in Appen-

dix A in Figures A-2 and A-3. The behavior of the parameter traces in

these figures is due to the nature of the gradient and the characteristics

of the forcing function. The local variations of the parameters notice-

able in Figures A-2 and A-3 therefore are characteristic of the process.

Where they occur in subsequent examples they should be viewed with caution
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6.1.3

since they do not necessarily indicate local time variations in the

parameters being matched.

Referring again to the adjustment trajectories displayed in Fig-

ures 5-11 and 5-13 the effect of increased gain (K) is strongly noticed

by comparison to low-galn trajectories. For K = 0.008 and 0.0_ the

adjustment rate is extremely small and the almost monotonic trajectories

approximate a nearly ideal descent path. This behavior clearly shows

the validity as well as the limitation of the basic assumption inherent

_. t.... approach to model matching, regarding the nature of gradient

descent paths. A direct observation of units of time along the trajec-

tory, and hence of the descent rate, is possible by counting the suc-

cessive scallops formed by the oscillating gradient vector. Each

scallop corresponds to a half-period (3.14 sec) of the sinusoidal ex-

citation signal.

The Effect of Parameter Initial Values

The results obtained from this experiment are given in Figure 5-12

and have been discussed in Section 5.

Effects of Rate Terms in the Criterion Function

Margolls ( 8 ) has shown that improvement in stability and conver-

gence time of continuous model matching processes is achieved if a term

proportional to the rate of change of the matching error is added to the

criterion function. To study this effect the criterion function

f : ½ (e + q_)2 (6.1)

was adopted with q = const. Different values of q were used in the

study to find optimum conditions.

In order to obtain rapid convergence (which is desirable for the

tracking of time-varying parameters) it is necessary to increase the ad-

justment loop gain. However, the parameter adjusting loop becomes un-

stable when gain is increased. This effect is illustrated in Appendix A

in Figures A-4 and A-7 for q = O, that is, when no rate term is present

in the criterion function. These figures illustrate the behavior of the

four parameters for sinusoidal excitation at a frequency of 1.O rad/sec.
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The effect of increasing the contribution of the rate term is seen

in Figures A-4, A-5, and A-6 for q equal to zero, 0.5, and 1.O, respec-

tively. The adjustment gain in each of these three figures is held at

K = 8.0, that is, the value of gain is selected sufficiently high to

cause oscillatory behavior of the parameter adjusting circuits in the

absence of the rate term. As q is increased from zero a dramatic im-

provement in performance is evident_ For q = 0.5, most of the oscilla-

tion in (xS and (M4 disappears and the criterion function is essentially

zero throughout the duration of the run_ As q is increased to 1.0 the

oscillation in parameter _h disappears entirely while that in _3 is re-

duced to less than 5 percent of its maximum value, Conversence of the

parameters to within 5 percent of the desired values occurs in approxi-

mately 3 seconds. These results show that high gain values yielding

rapid convergence can be tolerated by the parameter adjustment circuits

without instability only when the criterion function is augmented by a

sufficiently large error rate term. It is interesting to note that in

Figures A-4 and A-5 the oscillatory behavior of the parameters is not

revealed by a mismatch of model output and system output,

The effect of the rate term q on parameter adjustment in the case

of random excitation is illustrated in Figures A-7 and A-8o These re-

sults were obtained under the following conditions : The random input

signal obtained from a Gaussian noise generator was f_itered by a third

order lag circuit with a break frequency of 1,O rad/sec, Parameters _I

and _2 were held constant in order to minimize the interaction between

parameters, The adjustment loop gain for parameters _3 and c_4 was set

at K = 16. This gain value resulted in instability for a sinusoidal

input. The values of q used in Figures A_7 and A°8 were 0 and 0.5

respectively.

Figure A-7 shows instability of the parameter adjusting circuits

in the absence of the rate term0 It is interesting to note that due to

the nature of the excitation signal there are portions of the tracking

run when the parameters remain approximately constant and the matching

error approaches zero. Howeverj at times when the excitation makes large

excursions the equilibrium is d_sturbed and the parameters begin to

oscillate 0

*Attempts at adjustment of four parameters under sinusoida! system excitation

normally lead to indeterminacy of two of the parameters if q = O_ It was

observed here that a sufficiently large rate term (q = i=0) eliminates this

condition, but an analytical explanation has not been found.
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6.1.4

Figure A-8 showsthe behavior of the systemwith q = 0.5. Parameters

_3 andG4 convergeto within approximately 5 percent of their correct val-
ueswithin one secondbut continue to exhibit small randomoscillations

(Z 5 percent from the correct value) during the entire run. Theimproved
convergencetime, as comparedto the 3 secondadjustmentwith the slnusoidal
input, is probably due to the presenceof higher frequencies within the
excitation signal. It canalso be noted that the systemoutput and the
modeloutput are essentially equal, i.e., the matchingerror is nearly zero°
Increasing the rate term to q = 1.O doesnot result in further improvement
of the parameteradjustr_entprocess.

Sinusoidal Variation of Parameter Gl

Results obtained when attempting to track a sinusoidal variation of

parameter a I are shown in Figures A-9 and A-lO. The experimental condi_

tions imposed in each case were as follows:

Figure A-9: The system parameter a I was perturbed sinusoidally at a

frequency of .1 radians per second. Model parameters G2, G3, and G 4

were held constant.

Figure A-lO: Same perturbation of system parameter al as in Figure Aa9

but all four model parameters allowed to adjust.

The criterion function did not include a rate term in this instance. The

results obtained are summarized as follows:

l) When only the model parameter is allowed to adjust which corresponds

to the perturbed system parameter (in this case al) , an acceptable param-

eter tracking performance is observed. Superimposed on the sinusoidal

parameter variation of G1 are random components which are introduced by

the random excitation signal. Disturbances in the time history of param_

eter Gl correspond to large excursions in the system and model output

quantities.

2) When all four circuits are activated some undesirable side effects

are observed (see Figure A-lO): The sinusoidal perturbation of system

parameter a I reflects not only in the model parameter _l but also in

parameter _3' Secondary cross-coupling effects are caused in turn by

53 variation and tend to reduce the amplitude of oscillation in param-

eter G1 to a new and incorrect value. Parameters _2 and _ exhibit some
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drift from their correct values, but their effect uponthe criterion
function is negligible. Thesephenomenahavebeenadequatelyexplained
in Section 5. 6 by the analysis of cross-coupling and relative accuracy
of parameterdetermination.

Sinusoidal Variation of Parameter a 3

Attempts to track a sinusoidal variation of parameter a 3 are illus-

trated in Figures A-11, A-12, and A-13. During this experiment only model

parameters _3 and _4 were allowed to vary, while parameters Gl and _2 were

held fixed. The results are summarized as follows:

l) Attempting to track parameter a 3 with a low value of gain (K = 2.0)

and q = 0 results in the curves of Figure A-11. It is apparent that

parameter 5 3 does not follow the sinusoidal perturbation of a 3. Further-

more, parameter _h drifts from its correct value to a new incorrect equilib-

rium position. The matching error, which is given in trace 8 of Figure A-11

is quite small when the corresponding scale is taken into account.

2) Increasing the gain to K = 16 with q = 0 results in the curves shown

in Figure A-12. Evidently both parameters (z3 and (z4 become unstable and

the match between system and model becomes considerably worse. As observed

in previous results, there are periods of time during which the match is

rather good, followed by periods of time where the random excitation signal

causes uncontrolled parameter oscillations.

3) Figure A-13 shows the improvement obtained by adding a rate term

(q = 0.5) to the criterion function while all other experimental conditions

remain the same as in Figure A-12. The match between system and model out_

puts is excellent, and _3 approximately tracks the sinusoidal oscillation

in a 3. However, the effect of random excitation peaks is reflected again

in random disturbances superimposed on the oscillation of parameter 5 3 .

Step Variations in Parameter a 3

Figures A-14 and A-15 show the behavior of the parameter tracking

system when parameter a 3 is perturbed by step changes at a low and high

frequency, respectively. The adjustment gain is K = 16, and q = 1.0.

All four parameters are allowed to track. Consider first Figure A-14

which in effect corresponds to the behavior of the model matching technique
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for fixed parameters sinceadequate time for parameter adjustment elapses

before the values are changed. The match between system output and model

output is excellent but a switching transient is observed in the matching

error. Trace 8 which includes the effect of error rate exhibits this ef-

fect clearly.

In Figure A-15 parameter a 3 is perturbed by a square wave signal.

It can be seen that the system and model outputs contain significant energy

at frequencies approximately equal to the fundamental frequency of the

square wave. Consequently, the behavior of parameter _3 in the model varies

from cycle to cycle, depending on the corresponding initial conditions

present in the random excitation signal. Cross-coupling of parameters is

again evident, both in _i and in _4"

Adjustment of Parameters in Nonlinear Models

The nonlinear system described was simulated on the analog computer.

The adjustable model was identical in form to this system, and had seven

adjustable parameters _i' G2' ""s T" Of particular interest in this por-

tion of the study are the parameters characterizing the nonlinear terms

of the model equation:

G5 : coefficient of the cubic term x 3

G6 : coefficient representing dead space

G7 : coefficient representing saturation level.

The criterion function included the rate term qe;where q = 0.5. The

adjustment process of each parameter _5' G6'and _7 was first studied

separately.

i) The results of adjusting parameter G5 are shown in Figure A-16.

The presence of the cubic term in the system cannot become noticeable

until the output variable y becomes large. Consequently, _5 does not

deviate substantially from its initial value until the random excitation

causes large excursions in the system and model outputs. Total adjust-

ment time is of the order of 5 seconds.

2) Adjustment of the deadzone parameter (56) is shown in Figure A-17.

When the model deadzone is set to an inltial value of zero, the initial

excursions in the model output z are clearly too large. The adjustment

process requires approximately three seconds to increase $6 to its cor-

rect value.
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6.1.8

3) The saturation level _7 was adjusted manually due to a lack of

computing channels required to perform automatic adjustment. The re-

sults of this manual adjustment process are shown in Figure A-18.

4) Figure A-19 shows the effect of simultaneous adjustment of the

deadzone and the cubic term. The behavior exhibited here is typical

of a number of runs performed. A relatively rapid initial adjustment

of the deadzone is followed by a gradual adjustment of the cubic term.

This effect can be expected: after adjustment of the deadzone the

matching error becomes extremely small and relatively large excursions

of the model output are required to further actuate the adjustment

circuitry. The final adjustment of parameter _5 to its correct value

occurs at the point indicated by an arrow in Figure A-19, approximately

37 seconds after the beginning of the run, at a time when the matching

error becomes sufficiently large to cause parameter adjustment. A

slight cross-coupling between the parameters is also evident at this

time. Since at this point the model output is too large this error

can be corrected either by a decrease in the cubic term or by an in-

crease in the deadzone width. Both effects are noticeable. Such

interactions are typical under conditions where different parameters

have a comparable effect on the output signal.

Effect of Additive Noise on the Parameter Adjustment Process

Random noise perturbations were added to the output of the system

equation to simulate unmatched random fluctuations of the human opera-

tor's output in order to observe the effect of this disturbance on the

model adjustment process. The additive noise can also be interpreted

as measurement error occurring in the process of data handling, e.g.,

signal transmission, recording and playback of pilot output data.

The effect of the noise on the adjustment of one linear and one

nonlinear parameter is illustrated in Figures A-20, A-21, and A-22.

The parameters being adjusted are the coefficient _3 of the input rate

term, and the deadzone _6" Figure A-20 shows the adjustment process with

no additive noise. It can be seen that the rate term adjusts rapidly

with the occurrence of peaks in the system output and that the adjust-

ment is essentially complete for both parameters in approximately

i0 seconds. The matching error is essentially zero after this time.
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6.2.1

The effect of low frequency additive noise is illustrated in Fig-

ure A-21. It can be seen that both parameters deviate substantially

from their correct values, due to the low disturbance frequencies

(the noise signal input gain used here is c = 8).

A vastly different result obtained with wideband noise input hav-

ing a bandwidth of 30 cps and an input gain c = 1 is shown in Figure A-22.

The disturbances at high frequency observed in the system output and the

error signal are very large but are filtered effectively by the parameter

adjustment circuits. The two parameters _3 and _6 converge as rapidly

as in the undisturbed .... t_ ..... 20)_= _y_ A and .... _ _^_- correct - _....

It must be noted that the gain of the noise disturbance is much lower

than in the case shown for low frequency noise (Figure A-21). Noise

signals with the same zero frequency spectral density were used in both

cases.

Matching of Human Tracking Data

Model matching techniques were applied to human tracking data in

each of the four main parts of the study and the results will be pre-

sented separately for each part.

Linear Invariant Models of Human Operators

The three methods (continuous, iterative, and relaxation) discussed

in Section 4 were employed to determine the coefficients _l' _2' _3' and

G_ by matching the solution of the linear equation (2_17) to human track-

ing data.

All three of the techniques employed can be considered successful

in the sense that all converge to steady-state values of the four param-

eters in the model. The values of the parameters _l' _2 ' u3' _' obtained

are presented in graphical form in Figures 6-1, 6-2, and 6-3. These

figures correspond to three different controlled element dynamics as in-

dicated in the legend. The following observations are made:

l) The mean values of parameters obtained by the three adjustment

strategies are not equal but the scattered data usually overlap. For

parameter _l the continuous method yields smaller values than the other

two. For parameter G 2 the iterative method yields the smallest value

of the parameter. Parameter _3 yields approximately equal values with
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all three methods. A slightly higher value for parameter G 4 is obtained

by the relaxation method. These differences have been partly explained

in Section 5 in terms of the sensitivity of the error criterion to in-

dividual parameter deviations. It should be recalled here that the sensi-

tivity uS exceeds all other sensitivities and u2 is the smallest sensi-

tivity, in terms of mean absolute values. The variances in G 3 and S2

reflect this property.

2) The values of the parameters obtained with any one adjustment strategy

vary from run to run and between operators. This variation is of the same

order of magnitude as the variation between strategies. However, insuf-

ficient data are available to determine the statistical significance of

the variations.

3) The values of parameters obtained with the two second-order dynamics

(Figures 6-i, 6-2) are approximately equal. There is an apparently sig-

nificant difference between these parameters and those obtained with first

order dynamics (Figure 6-3). Intuitively one would expect that the easier

first order task requires smaller lead compensation values G3, on the

average. This expectation is clearly confirmed by the data.

4) Parameter values for six typical runs, averaged over the three

methods, have been tabulated and are shown in Table 6-i. Equivalent val-

ues of gain and time constants in the corresponding transfer function are

also listed. The majority of the data yield complex roots in the denom-

inator of the transfer function. However, at least two of these exhibit

very small imaginary parts. The significance of these complex roots will

be discussed in Subsection 6.2.3. The results from any two runs with the

same dynamics are quite consistent. Greater consistency is found in the

values of gain K obtained from any two runs than in the values of the

time constants.

An interesting general conclusion regarding the sensitivity and

ease of determination of the transfer function characteristics can be

derived from the data obtained in this study. The numerator terms G3,

G4 (and hence KI and TI) can be determined with high accuracy. They are

also very sensitive to the dynamics of the task, i.e., the human operator

alters his responses readily to adapt his performance to the task. Con-

versely the denominator terms are difficult to determine but they do not
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TABLE 6-i

AVERAGED PARAMETER VALUES OBTAINED FOR THREE

CONTROLLED ELEMENT DYNAMICS

Controlled

Element

Dynamics

Coefficients Elements of Transfer Function

Run Ul u3 u3 a4 K1 T1 T3 T3No.

12.5

s-grg 

K

S2

K
S+l

1 6.3 19.0 3.67 5.8 .30 .63 .17+.15j .17-.15J

5 6.8 14.0 4.15 3.7 .26 i.i .24+.iij .24-.iij

7 8.3 23.0 3.4 2.3 .I0 1.48 .18+.lJ .18-.lj

12 9.5 2-3.0 5.5 1.8 .078 3.0 .2.1+.03j .2.1-.030

15 8.0 13.3 -.73 3.4 .26 -.21 .18 .42

17 6.6 12.2 .067 3.0 .25 .022. .27+.082j .27-.082j

6.2..2.

change much as the control task is altered. These conclusions should

have a major influence on the experimental design of future model match-

ing studies.

Comparison with Previously Published Data

A comparison of these results with data published by Adams ( Z )

is indicated in Table 6-3. The results are comparable. The restriction

to real roots in Adams' study is due to the model transfer function for-

mat adopted by him. In comparing the data the following factors must be

noted:

a) The excitation signal break frequency was I rad/sec in both studies.

However, the STL study used a third-order filter while Adams presumably

used a first-order filter.

b) The gain term in the definition of the dynamics cannot be compared

without additional data. The STL gain includes the oscilloscope gain in

volt/cm, thus yielding units of cm"I . In Adams' notation the gain refers

to the controlled element dynamics only thus yielding units of volts -I .
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6.2.3 Occurrence of Complex Roots

Table 6-2 shows the occurrence of complex values of the param-

eters T2, T 3 in the human operator transfer function that are derived

from the coefficients 0_, cz2. On the other hand, Adsamg' results (2)

are obtained from a transfer function model with denominator (i + xs) 2.

This formulation excludes the possibility of complex roots but postulates

real-valued double roots. The following math_,atical aspects are of

interest and must be considered when comparing these data:

i) The complex roots T2, T 3 are obtained from the characteristic

equation of the human operator model expressed in terms of _I' (x2

1 2 %
-- S +--

O_2 C_2
s+l=O

Inaccuracy in the determination of _i' C_2 therefore reflects

strongly in the roots T2, T3, particularly if these roots are approxi-

m-rely equal.

2) The correspondence of the coefficients 0_, _2and the character

of roots s2 = I/T2, s 3 = I/T 3 of the characteristic equation is shown

in the 0_, _2 plane (see Figure 6-ha) which delineates regions of real

and complex roots as well as regions of instability. The stable quad-

rant (_i > 0, _2>0) is mapped into a plane of real-valued and a plane

of complex-valued roots s2, s3, as shown in Figure 6-4b and c. Curves

of constant _i and _2 values are plotted in these graphs; their inter-

sections show the corresponding values of s2, s3. At t_e locus of

double roots the C_l, _2 curves intersect in cusps, making the location

of the roots extremely sensitive to small _-variations.

3) The characteristics of the pilot model and the relative magni-

tudes of parameter influences ana/jzed in Section 5 explain the limited

accuracy inherent in the determination of o_ and (x2 which was confirmed

experimentally as shown by the scatter plots (Figures 6-1, 6-2, and 6-3).

The combined effect of the above factors explains the apparent

discrepancy in the denominator terms in the STL model and in Adams' model.
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Time Recordings

The actual performance of each of the three methods can be examined

more directly from the strip chart recordings obtained during typical

runs; see Appendix A, Figures A-23 to A-27. The recordings contain the

time history of the four parameters as well as inputs and outputs of model

and human operator and the criterion function.

The iterative method is illustrated in Figures A-2Ba, 2Bb, and 24.

Figure A-RSa shows a computer run performed during one iterative cycle

with all parameters held fixed. The corresponding iterative sequence

is shown on a different time scale in Figure A-23. An essentially mono-

tonic decrease of the criterion function F is exhibited by the envelope

of the sawtooth curve, trace 5. The total time of convergence in this

example is quite large since each iterative cycle required approximately

160 seconds, composed of four subcycles resulting in step adjustment of

one parameter at a time. This time sequence is noticeable in Figures 23b

and 24. In practical uses of the method a time compression of at least

50:1 would be possible with high-speed iterative analog computers.

Figure A-24 shows an iterative run where terminal limit cycle os-

cillations are observable in all parameters, but most notably in _3 and

_4 which have the highest adjustment loop gain as previously discussed.

case the finite step size _czi(k) being maintained throughout theIn this

sequence was obviously too large. A refined technique would require a

reduction of step size when the occurrence of limit cycles is registered

by the computer. The oscillation may also be due in part to the fact

that the gradient was computed using the finite difference approximation

. F(%,c,2, ...%)

J ,,1,2,...n

rather than the influence coefficient method.

Typical results using the continuous method are shown in Figures A-25

and A-26.

The relaxation method was based on finding the minimum of the cri-

terion function (on a digital voltmeter) and manual adjustment of the

parameters. No attempt was made to improve the resolution of the volt-

meter near the minimum, which explains a somewhat uncertain convergence

to the final parameter values, as shown in Figure A-27.
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6.2.4

Validity of the Results

The results show that all three methods considered yield parameter

values which are approximately equal. However, the final value of the

performance criterion function (in the iteratlve and relaxation methods)

was seldom smaller than 30%of the values obtained with arbitrary initial

parameter values. Furthermore, while the model output, after parameter

adjustment, does resemble the human pilot's output, this resemblance is

not sufficiently close to make the criterion function approach zero. The

differences could be due to:

a) Omission of the tlme-delay (reaction-time) term known to exist in

the human

b) Inadequate complexity of the model

c) Inadequate training and, hence, lack of consistency in tracking

on the part of the operators.

Identification of Time-variant Human Operator Parameters

The continuous model matching technique was used to identify the

parameters of a human operator in a tracking task so constructed that

the operator's behavior became tlme-varylng. The operator is expected

to adjust his response to changes in the dynamics of the controlled ele-

ments. The controlled element gain and "time constants" were varied as

functions of time as outlined in Section 3. The results for two different

operators performing the same time-varying tasks are shown in Figures A-28

and A-29.

Consider Figures A-28a and b. Parameter G 1 does not reveal any

well-deflned pattern and can be considered approximately constant for

the five-minute duration of the run. Parameter G 2 exhibits what appear

to be significant changes. As the plant gain is increased parameter 5 2

likewise increases while parameter G 4 decreases. As the plant is trans-

formed into a double integrator, parameter G 2 further increases while

parameter G 4 further decreases. The trend observed in parameter G 2 is

essentially reversed in G B in the course of these plant variations.

Effects of these changes manifest themselves in the tracking behavior:

The operator's output, the second trace of Figure A-28b, shows that dur-

ing the portions of the run when the loop galn was high the amplitude
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of the operator's corrections was correspondingly lower. This behavior

is to be expected since the same magnitude of correction can be obtained

with a smaller stick displacement when the plant gain increases.

The effect of the observed time variations in parameters _2' _3 and

_4 is most clearly discernible in terms of the gain and lead time con-

stant in the operator's mathematical model. It is assumed that at the

end of each phase in the tracking run the model parameters are stationary.

Average values of the parameters _I through _4 were read at the times

indicated in Figure A-28b as listed in Table 6-3.

TABLE 6-3

Indicated Model Lead Time

Time Gain Const.

t 1 .437 1.5

t 2 .z78 1.9

t 3 .15o .2_8

t 4 .443 1.5

As the difficulty of the task increases, i.e., as the plant gain

increases and the dynamics is changed to a double integration, the

operator's gain decreases and his lead time constant increases. In other

words, the operator increases his effort of input prediction at the ex-

pense of output gain. As the plant is once again adjusted to its orig-

inal condition the model parameters return to approximately their original

values and the matching error again approaches its original v_lue.

A similar pattern of behavior is observable in the records of

Figures A-2_ and b, except that the operator performing the task in

this case exhibits a considerably greater variation in response than

the previous one as is indicated by larger excursions in the parameter

values. It is expected that longer training times would have resulted

in smoother performance for both operators.
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6.2.5

The results show the feasibility of using continuous parameter

tracking techniques for the identification of time-varying human pilot

parameters. However, considerable caution must be exercised in inter-

preting the parameter values in a time-varying model since these values

are also influenced by such factors as the excitation signal, transients

caused by particular initial conditions, and parameter interaction.

Matching a Nonlinear Model to Human Pilot Data

The continuous method was used to match the nonlinear model dis-

cussed in Section 3 against human operator tracking data. In order to

minimize cross-coupllng effects, only two parameters were adjusted si-

multaneously during one run. Following this parameter adjustment, a

mean value for these parameters was obtained from the traces and used

in following runs. The results of this process are shown in Figures A-BO,

A-31 and A-32. The input and output were obtained from approximately

30 seconds of human tracking data recorded on a magnetic tape loop. The

following observations are made:

i) The addition of nonlinear terms 5 5 and 5 6 to the model reauces

the model matching error. Evaluation of the integrated absolute error,

tl+T

t 1

over the last 30 seconds of each of the three runs yields

F 1 _ 2.2 cm 2 from Figure A-30

F 1 _ 1.9 cm 2 from Figure A-31

F I _ 1.5 cm 2 from Figure A-32

During the run shown in Figure A-32 the four linear parameters were

held fixed at the mean values determined from the runs of Figures A-SO

and A-S1. The reduction in the error measure is taken as an indication

that nonlinear effects in the pilot's response are at least partially

taken into account by the nonlinear terms added to the model.
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2) The role of the parameter associated with the cubic term 55

in the model output is not sufficiently clear. In Figure A-32 55

is a small negative value for a portion of the run, then zero, and

then a small positive value . Whether or not this variation represents

in fact a change in human pilot characteristics cannot be determined

without additional supporting data.

3) The deadzone term 56 also varies both positively and negatively.

A "ne_tive deadzone" corresponds to a nonlinear characteristic known

as "negative deficiency" (Figure 6-5). The adjustment of 56 has the

following effect: When the model output is too small, 56 tends to be-

come negative, thus causing in effect an amplification of the model

output by increasing the magnitude of the input term xd. When the model

output is too large 56 becomes positive thus causing a decrease in the

magnitude of the input term and a corresponding attenuation of the

output.

The results shown in these three figures indicate that continuous

model-matching techniques can be used for the determination of param-

eters in nonlinear models of human pilots. The tracking records used

in this portion of the study were obtained during an earlier phase of

the program, where no attempt was made to induce or accentuate nonlinear

behavior. The human operators would probably show clearer evidence of

nonlinear behavior if the task had included nonlinear dynamics.
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6.2.6 Two-Axis Model Matching Results

As outlined in Section 3, the computer simultaneously adjusts the

four parameters of a single-channel linear model which represents the

input-output characteristics of the human operator in each axis of the

two-axis task in the absence of cross-coupllng. Figure A-33 shows the

parameter values obtained when this model is matched to the horizontal

tracking response. The parameters obtained from matching vertical axis

trackiag responses are shown in Figure A-54. The displayed error appears

on charnel i, the pilot's output on channel 3 of these figures. The two

traces exhibit a highly consistent tracking behavior, with the frequency

and amplitudes of the operator's output not varying significantly during

the run. Consequently, it is expected to find that the model parameters

maintain approximately constant values. This result can indeed be ob-

served in both figures on channels _ through 8.

The validity of the model matching results presented in this section

will he evaluated by examining the mesa squared residual matching error

defined by T

-- /
2 I eh2eh = _ dt

o

where eh is the error obtained by subtracting the model output for the

horizontal axis from the pilot's horizontal axis output and T is the

run length. Similarly, e represent_ the mean squared residual matching
v ---2 --_

error in the vertical axis. The values of ev abd eh obtained for the

runs of Figures A-33 and A-34 are given in Table 6-4.

TABLE 6-4

Values of Mean Squared Matching Accuracy

in Horizontal _ Vertical Axes

Variable

Parmneter5

Fixed

Parameters

Matching Accuracy _ of Human Power Output
Accounted for by Model

Horizontal Vertical• h e v

O.Oll5 O.O167

0.0112 0.0180 63.0 82.7
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The resulting residual error is approximately the same for fixed settings

of the parameters at their approximate mean values and for parameters

which are allowed to vary about the mean value. The percentage of human

operator output power accounted for by the model is also listed. Since

the model accounts for 82.7 percent of the total output power in the

vertical case, and for 63.0 percent in the horizontal case, it can be

considered a reasonably good representation of the human pilot's tracking

characteristics in the two-axis case.

The effects of adjustment gain and error rate term on the mean squared
2

error e are given in Table _-_
V

TABLE 6-5

Effect of K and q on Model Matching Accuracy

m

2
Gain, K q e

V

o o o.oo95

o.5 o o.oo92

1 o o.0o98
2 0 0.0122

0.5 0 0.0092

0.5 0.5 0.0088

O. 5 1.0 O. 0098

An increase in adjustment gain produces a poorer match to the human

pilot's output than that obtained with low values of gain. This result

probably is due to the larger parameter excursions from the optimum which

result from increases in adjustment gain. The integrated effect of the

parameter excursions results in an overall mean residual error which is

larger than the one obtained with small parameter excursions. For com-

parlson the result of a run made with fixed parameter values is included

(K = O) which shows a low value of residual error. The mean parameter

values used in this run were determined by visual inspection of the track-

ing record and are not necessarily the true optimum.
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6.2.7

Table 6=5 also shows the effect of the rate term _ on model

matching accuracy. The results indicate a small improvement by

selecting q= O.5 which had been the optimum in previous portions of

the study from a standpoint of stabilization of the adjustment process.

Comparison of Trackin_ Performance and Model Matching in One and Two Axes

An extensive number of measures of tracking performance were taken

during the model matching runs in order to evaluate quantitatively the

differences between operator performance in single-axis and in two-axis

tasks. As discussed previously, two subjects were first asked to perform

single axis tracking of horizontal and vertical motions of the display dot

on the oscilloscope screen. The same subjects subsequently performed

two-axis tracking tasks, and a comparison of the performance between these

the follo,_inE measurestwo situations was highly desirable. In addition,

defining model matching accuracy were determined:

2
i. Mean square horizontal disturbance input rh

2. Mean squared vertical disturbance input r
v

2
3- Mean squared horizontal tracking error xh

2
4. Mean squared vertical tracking error x

v

2
5- Mean squared horizontal controller output Yh

2
6. Mean squared vertical controller output Yv

2 2
7. Mean squared residual matching errors eh and ev

The mean squared trackin 6 error in each axis can be used to evaluate

the ability of the operator to perform the tracking task, while the mean

squared residual matchin 6 error can be used to evaluate the degree to

which the mathematical model serves to represent the pilot's performance.

A tabulation of these measures and of the values of the four parameters

obtained for each tracking run is given in Table 6-6.

The differences between performance in the one and two-axis tasks

respectively can be seen most clearly by averaging mean squared tracking

error values obtained in Table 6-6. The tabulation of these averaged values

lO5
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is given in Table 6-7. A significant increase in normalized mean

squared tracking error is observed for both operators in the two-axis

task as compared with single axis tracking. Normalized performance

Measures

2 2

n = ---2 n =
r h r v

are obtained by using the total power in the input signal as a normalizing

factor. The use of such a normalizing factor is consistent with previous

work published in the literature. The increase in normalized mean

squared tracking error ranges from 20 to 67 percent, and reflects the

increase in the difficulty of the task when the second axis is added.

Table 6-7 shows average values of the parameters obtained for both

axes and both operators. The parameters values obtained in a particular

axis are remarkably consistent, i.e., the _'s obtained for the vertical

axis from both operators H and R are approximately equal. Likewise,

the horizontal axis results for both operators are in close agreement.

In view of the rather wide differences in normalized mean squared tracking

error between the operators this consistency in the models _ndicates that

variations in tracking performance cannot be described completely by the

linear tlme-varying mathematical model assumed here.

Asymmetry between performance in the two axes is revealed by the

degree to which a mathematical model[ is cai_ble of representing a pilot ::_
2 2

performance in euch axis. Table 6-8 lists (e h ) and (e v ) obtained for

both operators normalized with respect to the mean squared trackin_, elf or

in each case. Input mean squared tracking error rat/let than the disLurban_:e

input were used as normalizing factors in this case since the tracking

error is in fact the input signal to both pilot and raodel in the mob el

matching configuration of Figure 2-1. Table 6-8 lists values of (eh2)n

and (e 2) averaged among all runs for both operators in the respective

v n
axes. It is observed that n is considerably smaller in the vertical

axis than in the horizontal axis, both in single axis tasks and for the
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• TABLE 6-8

Operator

H

R

H

R

Comparison of Normalized Matching Accuracy
for Two Operators

.19

.I12

.17s

.15o

.o8o

.o6o

.067

One -axis

Two -axis

(e_)n Average of Two Operators

Percent of Total Operator Output

Not Matched bMModel

Operator

H

R

H

R

Horiz.

41 .o

27.0

ZT.Z

33.6

--2
e

Power -_

,,, YI,,

Vertical

21.7 _ One-axl s12.7

21.6 I Two-axis21.2

vertical axis of the two-axis task. In other words the mathematical

model represents the operator's performance in the vertical axis more

satisfactorily than in the horizontal axis. The cause of this lack of

symmetry in the performance of the two tasks requires further investiga-

tion. A controlled experiment may be required in order to isolate per-

tinent effects such as mismatch between design characteristics of the two

axes of the hand controller which'might contribute to the asymmetry. This

e 2

result is confirmed also by a comparison of the values -- and

yh 2
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6.2.8

2
e

v

__ which represent the fraction of the total operator's output which
2

Yv

is not matched by the model (bottom of Table 6-8).

Cross Coupling Between Axes

As discussed in Section 3, two types of cross-coupling between

axes were considered: perceptual (or input) cross coupling and motor

(or output) cross coupling. An extensive visual search of the tracking

records for each run of the two-axis task was made to identify possible

cross-coupling effects between the perceptual input in the vertical axis

on the motor output in the horizontal axis (and vice versa). Such an

examination of the tracking record should reveal disturbances in the

horizontal output resulting from a disturbance in the vertical input when

no such disturbance appears in the horizontal input. After finding

tracking records which show this type of cross-coupling, the correspon-

ding terms were introduced into the model, and parameter matching was

performed over the entire length of the tracking run. The resulting

values of eh were compared with the value of obtained when no cross-

coupling terms were employed. It was anticipated that this comparison

would yield evidence of the existence of cross-coupllng terms of the

form

_lYv, _3Xv, and B4xv

in the horizontal model. However, the resulting tracking records did

not show clearly defined or consistent values of the cross-coupling

terms for the entire length of the tracking record. The corresponding

value of the mean squared residual error actually shows a slight increase

as a result of introducing the _3 cross-coupling term into the mathematical

model. Similar results were observed for the B1 and 64 cross coupling

terms. In general, the introduction of the cross-coupling terms appeared

to be detrimental to overall model matching in terms of residual mean

square error. During the search for cross-coupling terms, the G param-

eters were held fixcd at their average values in order to eliminate

possible interaction oi' the adjustment loops.
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Some of the tracking records indicated values of B3which remained

approximately constant for periods ranging from 20 to 60 seconds. A

typical run showing this effect is given in Figure A-35. The cross-

coupling coefficient B3 has a reasonably constant value extending from

tl_130 seconds to t2_20_ seconds at values between 1.2 and 1.6 units.

The effect of introducing the cross-coupling term into the model of the

human o____ator during this interval results in approxlmately I0_ reduc-

tion in e 2 as shown in Table 6-9. This decrease of e 2 indicates the

existence of cross-coupllng for short periods of time. Similar reduc-

tions of e were observed for other short duration runs.

TABLE 6-9

Effect of Cross-Coupllng Term Bx v

on Model of Horizontal Axis Response

7 I0 /_22i 2e2 dt t21_lJ " e dt

Run _3 tl t2"tl tl Ave. Dlf.

1 O 14.59 _ .197z l

2 O 14.49 74 .1958 _ .19613 0 13.69 70 .1955
1.6 12.79 72 .1776 1

5 1.6 12.60 73 .1726 _ .1781
6 I.6 13.63 74 .18_i

9.2

131 see t2 = 204 sect I =

In summary, the model matching technlnue used in this study is

suitable for detection and quantitative determination of cross-coupling

which occurs in the responses of the human operator in two-axls tracking.

Additional research is required to dateline human cross-coupling effects

in realistic tracking situations which may be caused by the dynamic

characteristics of the controlled e]_emcnt. The task studied here did

not include conditions which would evoke a more consistent coupling in

operator responses.
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6.Z.9 Closed-Loop Characteristics of Human Dynamic Response

The closed-loop stability of the model was examined for a single axis

task and one axis of the two-axls task. Results showed only a minor shift

in the closed-loop poles with little effect on system stability.

The human dynamic response equation obtained from a typical single-

axis tracking run is given by

z .29 (.525 s + l)
°l(S) : T : 2

(.036 s + .Zls + 1)

whereas a typical case of two-axis tracking yielded

Z .269 (.286 s + 1) III
GI(S) _ T = 2

(.0385 s + .154 s +1)

In both tasks the controlled element dynamics was characterized by

I0

°z_"_ * , (s +l)

The resulting characteristic equations of the closed-loop system are

.036s 4 + .246 s3 + 1.21 s2 + 1.52 s + 3.9 = 0

for the aingle axis case, and

•0385 s4 + .1925 s3 + 1.154 s2 + 1.769 s + 2.69 = 0

for the two-axis case.

The closed loop poles obtained from these characteristic equations

are given below:

Sin$1e-axis Task (vertical) Two-axis Task (vertical axis)

s 1 = -1.55 + 4.0J s 1 = -1.67 + h.zgJ

s z = -1.55 - 4.0J s 2 = -1.67 - h.29J

s 3 = - .315 + 2.04J s 3 = - .83 + 1.62J

s4 = - .315 - 2.ohj s4 = -.83 - 1.6zj

iiO



These data signify stable closed-loop operation, in agreement

with the stable performance observed in all single and two-axis human

tracking experiments performed in this study. Other researchers in

the field have obtained unstable roots from parameter identification

studies of two-axis tracking data that appeared stable on inspection.

A more c_prehensive investigation of this point should be desirable.

Verbal communication by Mr. M. Sadoff of NASA Ames Research Center.
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, CONCLUSIONS AND RECCMMENDATIONS FOR FURTHER STUDY

Automatic adjustment techniques for determining the parameters of

dynamic models of the human operator have been investigated experimen-

tally and analytically with emphasis on developing practical computer

methods for this task. These techniques operate in the time domain and

determine the parameters of linear or nonlinear differential equations

which match human operator output data by minimizing a selected error cri-

terion by a gradient or steepest descent process. This approach avoids

any constraints of linearity and time-invariance of the dynamic model

which ai_ frequently found in methods used by other researchers. The

use of transfer functions or describing functions to characterize the

human operator's input-output relationship has been included only where

it was strictly applicable: in such cases the differential equation

parameters and the transfer function parameters obtained in similar

tracking tasks were found comparable.

The study proceeded from parameter matching of linear time-

invariant and time-variant models (Parts 1 and 2) of the human operator

in a single-axis tracking-situation to nonlinear models (Part 3). In

each case the necessary confidence in the model matching technique was

developed by first applying the technique successfully to a system with

known parameters before attempting the more exacting task of matching

human operator's data. The final part consisted in matching human out-

put data in a two-axis tracking situation characterized by symmetrical

and uncoupled dynamics of the controlled element. In all situations

considered in this study the operator performed a compensatory tracking

task by observing tracking errors displayed on an oscilloscope screen

and by manipulating a 2-axis fingertip control stick to null the error.

This study was primarily concerned with methods development rather

than with obtaining and cataloguing human operator performance data.

Inasmuch as the method of automatic model matching has been developed

to the point of providing consistent human operator parameters with small

residual model matching errors it will be desirable in further studies
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to apply the method to an evaluation of human performance data in a

systematic manner in tracking and control problems of practical in-

terest.

Significant experimental results obtained in this study include:

the improvement of stability characteristics of the parameter adjustment

loops by introdncing an error rate term into the criterion function; the

demonstration of parsmeter tracking in time-variant dynamic models; the

ability to determine parameters of nonlinear models; and the development

of techniques for determining cross-coupling coefficients in two-axis

tracking data. The most important theoretical results include the ex-

planation of the continuous gradient adjustment process and of fluctua-

tion of the local gradient vector in the parameter space. The influence

of excitation frequencies and adjustment gain on the dynamics of the

adjustment process was analyzed. This clarified the source of transient

peaks in the time histories of individual parameters. In addition, the

nature of dynamic interaction of individual adjustment loops and the

differences in relative adjustment gain were analyzed and expressed

in terms of the sensitivity matrix which governs the adjustment rate

of each of the parameters being simultaneously optimized.

Results of primary interest regarding computer programming included

the simplification of computer channels which yield the influence co-

efficients ui (e. g., only one sensitivity equation and one model equa-

tion is needed to yield the four influence coefficients of the basic

linear model); computer techniques for iterative and sequential model

matching; computer techniques for detecting and measuring cross-coupling

phenomena; and computer programming for determining the parameters of

analytic and nonanalytic nonlinear characteristics which may be present

in the model structure, such as deadspace, limiting, relay switching,

and hysteresis effects.

It is recommended that future research into model matching of

human operators be addressed to two areas in general:

I) the study of advanced methods of model matching including

methods which were outside the scope of the above investiga-

tions.
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2) the study of human tracking performance in tasks of practical

importance, including multi-axis tasks with essential cross-

coupling.

The results of the above investigations permit the use of continuous

and iterative model matching techniques with increased confidence in man-

ual control and tracking situations which can conveniently be described

in terms of differential equations rather than by transfer functions.

This removes the restrictions on linearity and time-invariance of the

model imposed by other techniques currently in use and simplifies the

man_a_iw_ of model equations in deriving influence coefficients.

The mean-square tracking error as well as the parameters of the

operator's mathematical model yield important measures of tracking per-

formance and should be considered as related aspects in the description

of human tracking capability. Determination of quantitative relations

between these measures should be of great theoretical and practical in-

terest. The tracking error also yields quantitative information on the

stationarity of the operator's tracking behavior as well as on the sta-

tionarity of the controlled system dynamics. It can, for example, pro-

vide important cues on the state of training of the operator which in

turn may explain fluctuations occurring in the parameters of the mathe-

matical model.

A second measure of importance which should be the subject of further

research is the model matching error itself. This error term can yield

much information on missing elements in the mathematical model in addi-

tion to registering the quality of model matching performance. The rela-

tive power in the model matching error as compared to that of the tracking

error provides a quantitative measure of model matching accuracy which is

often more significant than the absolute power° This relationship was

briefly explored in the 2-axis tracking results of Phase 4 but should be

further investigated in any subsequent studies.

An aspect of great significance which should also be studied for

a better understanding of human tracking performance in multi_axis tasks

is the reception and interpretation of displayed stimuli by the operator.

Clearly, the presentation of specific stimuli such as vertical and hori-

zontal dot excursions on an integrated display instrument is an idealization
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seldom encountered in practice. The stimuli received may be more diffuse,

including visual cues from flight instruments, visual cues from the extra-

vehicular scene, plus kinesthetic and proprioceptive feedback stimuli.

The significant effect of additional motion cues on pilot tracking per-

formance has been demonstrated by the interesting results of Adams' study

(19). Practical considerations of vehicle control and of the controller

characteristics should also be included in plans for further studies with

emphasis on clear definition of pilot input stimuli.



APP_-DIXA

Model Matching Time-Histories

The sample time-histories presented in this Appendix were

selected to exhibit significant characteristics of the parameter

optimization processes studied experimentally. These specimens

serve to illustrate the analytical results discussed in Section 5

of this report and support the conclusions derived from the experi-

mental study presented in Section 6. The reader will find detailed

explanations in the latter section. Symbols used to designate out-

put variables in the oscillograph records can be identified by refer-

ence to the block diagram, shown in Figure A-I.

x_ Human + e Error

Operator Criterion

Model

i

U.

Gradient

!x_'_[ Equations Computation

I d. '

Parameter Adjustment Signals

In iterative parameter adjustment this block is

replaced by finite difference scheme

Figure A-I

Elements of Model Matching Technique
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Time-History - Adjustment of Two Parameters With
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APPENDIX B

A COMPARISON OF THE NASA AND STL MODEL MATCHING I_LE_NTATION

The purpose of this section is to compare the analog computer tech=

nique used at NASA/Langley Research Center ( 2 ), (18) with the method

used at STL for the "continuous model matching method" in the present

study.

The NASA method is based on the work of Whitaker, Osburn and

Kezer on adaptive control (i), while the "output error" method used in

_.e o_, study is based on the work of M_rgolis and Lmondes (21). The

method will be compared on the basis of a) error criterion, b) determi-

nation of sensitivity coefficients, c) inherent errors and limitations.

B1. Error Criterion

Both the NASA work and the STL work are based on minimization of

a quadratic function of the matching error. Specifically, Whitaker's

work is based on the criterion

t_/," T (B.1)F w - _ e2dt

o

which represents the integral squared matching error. In practice_

however, when continuous parameter adjustment is desired, the work is

based on a new criterion

_- _ 2 (B,2)afw _e =_(z-y)2
d--T-

where z is the model output and y is the output of the system being
,

modeled.

The STL work uses a somewhat more general criterion given by

£m = ½(e + q._)2 (B.3)

In Whitaker's work the words "model" and "system" must be interchanged

to be applicable for model matching work, since the model-referenced

adaptive control theory uses a fixed model and an adjustable system.
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where the term qe is introduced for improved convergence.

that the two criteria are equivalent for q = 0.

B2. Determination of Sensitivity Coefficients u i

The coefficients u i can be evaluated in several ways.

we note that

_i = -- = = --

It is clear

First,

(B.4)

since the system output y is fndependent of the model parameter Pi" The

method used by Whitaker is based on block di_ram manipulation. Sensi-

tivity coefficients are obtained by mechanizing a filter whose output is

the desired coefficient ui, and whose inputs are one or more model signals°

For example, consider the model defined by

+ Pl z = Pz x (B.5)

In transfer function form

PZ X(s)
Z(s)

(s + pl)
(B.6)

Formal differentiation can be used to obtain

_z x/2/_

which is interpreted to mean that the coefficient u 2 = _p--_

csun be obtained from a filter with an input x(t), as

shown below :

(Bo7)

x(t) l l _uz, s +Pl

FiEure B-I
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Similarly

= P2 × (s)=_ Z(s)

_Pl (s + pl )8 s + Pl

and the filter configuration is given below:

(B.8)

z(t)

Figure B-2

uI

It should be noted that (as Whitaker points out) the partial derivatives

employed above are only used formally# and are strictly valid only when

the parameters are constant°

Now, the parameter adjustment is based on the relationship

Pi = - K a f = - K e ui (B.9)
Pi

Consequently, the filters of Figure B-I and B-2, followed by multi-

pliers and integrators, are used to provide the variable parameters

in the model°

The method used at STL is based on explicit computation of the

influence coefficient by differentiation of the model differential

equation with respect to the parameter° Thus, for equation (B.5), the

sensitivity equations obtained are

Ul + Pl Ul = -z

u2 # Pl u2 = x

which can be solved for the ui, Clearly, the filters of Figures

B-1 and B-2 are identical with the equations (B.lO).

(B@lO)
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The use of model signals in the implementatlon of the influence

coefficients can be further illustrated by the following example :

which corresponds to the model used in this study. Consider the in-

fluence coefficients u 3 and u_. These can be obtained frum the

equations

"63 +ul u3 + a 2 u3 _i

G'_ +_1 _ + c_zu_ =x

If we set up a model to solve (B.12) it can be drawn in the "filter"

notation as :

J I J tx¢

Figure B-3

But from (B.II) it can be seen that

d4 = u3

and consequently u_ is also available from the same filter output.

It should be noted that finite differences can also be used to

determine influence coefficients, so that

Y(Pl + _Pl ) " Y(Pl 't) ~ _Y (B.Z3)

Pl _ Pl
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B.3 Inherent Errors t Differences and Limitations

It follows from the preceding discussion that the "filter" method

and the influence coefficient programming method (14) are essentially

identical when the parameters are constant. If the parameters are being

adjusted, then in the STL method the parameters are adjusted both in the

model and in the sensitivity equation. In the NASA approach, the filter

parameters remain invariant. The latter approach is clearly valid when

the parameters are close to their true values, but may suffer from poorer

convergence when the parameters are far from their correct values. When

the parameters Pi are close to their "true" values ai, it is even possi-

ble to use system influence coefficients as approximate equivalents to

the model sensitivities, i.e. let

This approach is mentioned by Whitaker and was used extensively by

Donalson (20)° When the values of Pi and ai are far apart, however, or

when the ai are completely unknown, the choice of the fixed parameters

in the filter becomes another degree of freedom in the problem and a

particular choice may have to be Justified analytically or experimentally_

An extension of Whitaker's method using variable filters was studied ex-

tensively at 8TL by WoJ0 Klenk and termed "dynamic model reference adaptive

control" (17).

Neither method yields the actual sensitivities when the parameters

are varying, since then the ui are not defined.

The explicit parameter influence method is directly applicable to

nonlinear system. Since transfer function manipulation is not possible

in the nonlinear case, the time domain or differential equation approach

is indicated.

F_nally, the explicit parameter influence coefficient method makes

it possible to generalize the criterion function by addition of rate

terms, absolute value terms, etc.
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Summary

The signal_Itering method of Whitakerandthe influence coef-

ficient method employed by Margo!is are equivalent for linear time-

invariant systems. They differ only in whether the parameters in the

sensitivity equations (or filters) remain constant or are adjusted.

The influence coefficient method is rea_lyextendedtomore _neral

criterion functions and to nonlinear systems where trans_r functions

are not applicable.
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a

(X -

C -

e

F -

f -

h -

K -

(k) -

n

q -

QCt)-

r(t)-

S -

t -

U i -

V -

X -

y -

Z -

-

GLOSSARY

Parameter in the system to be identified.

Parameter in the model of the human operator.

Cross-coupling parameter in the model of the human operator.

Nonlinear cross-coupling parameter in the model of the human operator@

Initial condition model parameter.

Output error (e = z_y).

Time-integrated error criterion.

Instantaneous error criterion.

Subscript refers to the horizontal axis in a two-axis tracking task.

Gain.

Iterative notation - refers to the kth iteration.

Random noise - zero frequency spectral density = 2.41 volts_____-.
cps

A constant introducing error rate compensation.

Finite difference approximation of the gradient.

Input disturbance function,

Laplace operator@

Time.

Influence coefficient, _z/_ i.

Subscript refers to vertical axis of a two-axis task.

Oscilloscope display displacement_ centimeters.

Output of the human operator, + I unit full stick deflection

of + 30 degrees@

Output of the model of the human operator.

Output of a second model of the human operator with the ith parameter

increased by AS i @
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